Skip to main content

Main menu

  • HOME
  • ARTICLES
    • Current Issue
    • Ahead of Print
    • Archives
    • Abstracts In Press
    • Special Issue Archive
    • Subject Collections
  • INFO FOR
    • Authors
    • Reviewers
    • Call For Papers
    • Subscribers
    • Advertisers
  • SUBMIT
    • Manuscript
    • Peer Review
  • ABOUT
    • The JABFM
    • The Editing Fellowship
    • Editorial Board
    • Indexing
    • Editors' Blog
  • CLASSIFIEDS
  • Other Publications
    • abfm

User menu

Search

  • Advanced search
American Board of Family Medicine
  • Other Publications
    • abfm
American Board of Family Medicine

American Board of Family Medicine

Advanced Search

  • HOME
  • ARTICLES
    • Current Issue
    • Ahead of Print
    • Archives
    • Abstracts In Press
    • Special Issue Archive
    • Subject Collections
  • INFO FOR
    • Authors
    • Reviewers
    • Call For Papers
    • Subscribers
    • Advertisers
  • SUBMIT
    • Manuscript
    • Peer Review
  • ABOUT
    • The JABFM
    • The Editing Fellowship
    • Editorial Board
    • Indexing
    • Editors' Blog
  • CLASSIFIEDS
  • JABFM on Bluesky
  • JABFM On Facebook
  • JABFM On Twitter
  • JABFM On YouTube
Research ArticleOriginal Research

System Transformation in Patient-Centered Medical Home (PCMH): Variable Impact on Chronically Ill Patients' Utilization

Caroline S. Carlin, Thomas J. Flottemesch, Leif I. Solberg and Ann M. Werner
The Journal of the American Board of Family Medicine July 2016, 29 (4) 482-495; DOI: https://doi.org/10.3122/jabfm.2016.04.150360
Caroline S. Carlin
From the Medica Research Institute, Minneapolis, MN (CSC); and the HealthPartners Institute for Education and Research, Bloomington, MN (TJF, LIS, AMW).
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas J. Flottemesch
From the Medica Research Institute, Minneapolis, MN (CSC); and the HealthPartners Institute for Education and Research, Bloomington, MN (TJF, LIS, AMW).
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leif I. Solberg
From the Medica Research Institute, Minneapolis, MN (CSC); and the HealthPartners Institute for Education and Research, Bloomington, MN (TJF, LIS, AMW).
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ann M. Werner
From the Medica Research Institute, Minneapolis, MN (CSC); and the HealthPartners Institute for Education and Research, Bloomington, MN (TJF, LIS, AMW).
BS
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    Figure 1.

    Marginal effect of increasing maturity in overall Physician Practice Connections–Research Survey (relative to early stage transformation) by patient comorbidity status. **P < .05; ***P < .01. DM, diabetes mellitus; CVD, cardiovascular disease; IP, inpatient; ED, emergency department.

  • Figure 2.
    • Download figure
    • Open in new tab
    Figure 2.

    Marginal effect of increasing maturity in health care organization (relative to early stage transformation) by patient comorbidity status. **P < .05; ***P < .01. DM, diabetes mellitus; CVD, cardiovascular disease; HCO, health care organization; ED, emergency department; IP, inpatient.

  • Figure 3.
    • Download figure
    • Open in new tab
    Figure 3.

    Marginal effect of increasing maturity in delivery system redesign (relative to early stage transformation) by patient comorbidity status. **P < .05; ***P < .01. DM, diabetes mellitus; DSR, delivery system redesign; CVD, cardiovascular disease; IP, inpatient; ED, emergency department.

  • Figure 4.
    • Download figure
    • Open in new tab
    Figure 4.

    Marginal effect of increasing maturity in clinical information systems (relative to early stage transformation) by patient comorbidity status. **P < .05; ***P < .01. DM, diabetes mellitus; CIS, clinical information systems; CVD, cardiovascular disease; IP, inpatient; ED, emergency department.

  • Figure 5.
    • Download figure
    • Open in new tab
    Figure 5.

    Marginal effect of increasing maturity in decision support (relative to early stage transformation) by patient comorbidity status. **P < .05; ***P < .01. DM, diabetes mellitus; DS, decision support; CVD, cardiovascular disease; IP, inpatient; ED, emergency department.

  • Figure 6.
    • Download figure
    • Open in new tab
    Figure 6.

    Marginal effect of increasing maturity in self-management support (relative to early stage transformation) by patient comorbidity status. **P < .05; ***P < .01. DM, diabetes mellitus; SMS, self-management support; CVD, cardiovascular disease; IP, inpatient; ED, emergency department.

Tables

  • Figures
    • View popup
    Table 1.

    Elements of Physician Practice Connections–Readiness Survey, by Domain

    Chronic Care Model DomainElements of the Physician Practice Connections–Readiness Survey
    Health care organizationIndividual provider feedback
    Performance measurement
    Formal quality improvement activities
    Delivery system redesignAdvanced access visits
    Primary care teams
    Scheduling system for physician continuity
    Non-MD educator*
    Nurse manager*
    Previsit planning*
    After-visit follow-up*
    Missed appointments follow-up*
    Clinical information systemsDisease registry*
    Problem lists
    Medication lists
    Process flow sheets*
    Checklists of tests or interventions*
    Patient assessment questionnaire*
    Clinical test tracking
    Referral tracking
    Decision SupportClinical guidelines*
    Clinical guidelines preventive services
    Clinician reminders for chronic illness care*
    Clinician reminders for preventive services
    Clinician reminders for risk assessments
    Clinician reminders for counseling
    Abnormal radiology and lab test alerts
    Abnormal test protocols
    Self-management supportPatient reminders for chronic illness care*
    Patient reminders for preventive services
    Self-management programs for risk factors
    Individualized patient education about chronic illness*
    Self-management programs for chronic illness*
    Self-management plans/materials for chronic illness*
    Electronic information/communication with patients
    Systematic risk factor screening
    • ↵* Asked separately for diabetes, cardiovascular disease, depression, and asthma.

    • View popup
    Table 2.

    Summary Statistics of Variables by Study Population

    Diabetes MellitusCardiovascular Disease
    Observations, n9,0322,280
    Overall Utilization in TCRRVs, mean (SD)18,956 (34,703)27,796 (55,104)
    Prescriptions, mean (SD)50.9 (44.7)46.2 (41.9)
    Outpatient Visits, mean (SD)45.6 (69.0)45.0 (56.6)
    ≥1 Inpatient admission1,348 (14.9)604 (26.5)
    ≥1 Emergency department visits1,983 (22.0)615 (27.0)
    Age (years)
        <40751 (8.3)23 (1.0)
        40–491,533 (17.0)183 (8.0)
        50–541,432 (15.9)289 (12.7)
        55–591683 (18.6)414 (18.2)
        60–641,868 (20.7)600 (26.3)
        ≥651,765 (19.5)771 (33.8)
    Female sex4,537 (50.2)726 (31.8)
    Comorbidities
        06,144 (68.0)304 (52.1)
        12,129 (23.6)1,319 (34.3)
        ≥2759 (8.4)657 (13.6)
    Type of coverage
        Commercial5,450 (60.3)1,278 (56.0)
        Medicare1,226 (13.6)585 (25.7)
        Medicaid
            Mothers and children2,211 (24.5)394 (17.3)
            Special needs145 (1.6)23 (1.0)
    • Data are n (%) unless otherwise indicated.

    • SD, standard deviation; TCRRV, total cost relative resource value.

    • View popup
    Table 3.

    Distribution of Patients by Transformation Status of Their Primary Care Clinic

    Transfer Stage, by Clinic TypeDiabetes MellitusCardiovascular Disease
    PPC-RS
        Early1200 (13.3)343 (15.0)
        Intermediate5245 (58.1)1305 (57.3)
        Late2587 (28.6)632 (27.7)
    Health care organization
        Early455 (5.1)102 (4.5)
        Intermediate2351 (26.0)584 (25.6)
        Late6226 (68.9)1594 (69.9)
    Delivery system redesign
        Early2632 (29.2)756 (33.1)
        Intermediate5123 (56.7)1274 (55.9)
        Late1277 (14.1)250 (11.0)
    Clinical information system
        Early1470 (16.3)418 (18.3)
        Intermediate4605 (51.0)1168 (51.2)
        Late2957 (32.7)694 (30.5)
    Decision support
        Early688 (7.6)241 (10.6)
        Intermediate3528 (39.1)787 (34.5)
        Late4816 (53.3)1252 (54.9)
    Self-management system
        Early1696 (18.8)448 (19.7)
        Intermediate4248 (47.0)1088 (47.7)
        Late3088 (34.2)744 (32.6)
    • Data are n (%).

    • PPC-RS, Physician Practice Connections–Readiness Survey.

    • View popup
    Table A1.

    Marginal Effect of Increasing Maturity in Overall Physician Practice Connections–Readiness Survey (Relative to Early Stage Transformation) by Patient Comorbidity Status

    Marginal Effect of Maturity on Utilization Measures (P Value)
    Intermediate-Stage TransformationLate-Stage Transformation
    Diabetes Mellitus
        Total utilization*
            Average across comorbidity statuses0.040 (.407)0.079 (.151)
            0 Comorbidities0.066 (.272)0.095 (.115)
            1 Comorbidity−0.011 (.876)0.030 (.679)
            ≥2 Comorbidities−0.026 (.752)0.083 (.613)
        Number of prescriptions*
            Average across comorbidity statuses0.028 (.374)0.039 (.444)
            0 Comorbidities0.051 (.230)0.061 (.225)
            1 Comorbidity−0.028 (.511)−0.009 (.904)
            ≥2 Comorbidities0.003 (.959)−0.009 (.922)
        Number of outpatient visits*
            Average across comorbidity statuses−0.078 (.231)−0.151 (.020)
            0 Comorbidities−0.047 (.560)−0.147 (.075)
            1 Comorbidity−0.130 (.030)−0.172 (.004)
            ≥2 Comorbidities−0.184 (.005)−0.124 (.172)
        ≥1 Inpatient admission†
            Average across comorbidity statuses0.007 (.600)0.002 (.854)
            0 Comorbidities0.000 (.992)−0.005 (.620)
            1 Comorbidity0.011 (.718)0.007 (.821)
            ≥2 Comorbidities0.061 (.248)0.066 (.297)
        ≥1 Emergency department visit†
            Average across comorbidity statuses0.012 (.498)0.024 (.239)
            0 Comorbidities0.014 (.362)0.014 (.401)
            1 Comorbidity0.036 (.431)0.064 (.179)
            ≥2 Comorbidities−0.074 (.126)−0.009 (.855)
    Cardiovascular disease
        Total utilization*
            Average across comorbidity statuses−0.035 (.607)−0.072 (.505)
            0 Comorbidities−0.076 (.349)−0.175 (.107)
            1 Comorbidity0.055 (.510)0.159 (.294)
            ≥2 Comorbidities−0.111 (.424)−0.256 (.147)
        Number of prescriptions*
            Average across comorbidity statuses−0.046 (.287)−0.047 (.543)
            0 Comorbidities−0.083 (.234)−0.099 (.309)
            1 Comorbidity0.040 (.388)0.047 (.579)
            ≥2 Comorbidities−0.125 (.141)−0.089 (.401)
        Number of outpatient visits*
            Average across comorbidity statuses−0.167 (.002)−0.201 (.010)
            0 Comorbidities−0.198 (.004)−0.340 (.000)
            1 Comorbidity−0.055 (.530)0.029 (.835)
            ≥2 Comorbidities−0.342 (.004)−0.261 (.024)
        ≥1 Inpatient admission†
            Average across comorbidity statuses0.029 (.362)−0.001 (.985)
            0 Comorbidities0.014 (.532)−0.021 (.377)
            1 Comorbidity0.064 (.177)0.073 (.199)
            ≥2 Comorbidities−0.001 (.992)−0.105 (.258)
    Cardiovascular disease
        ≥1 Emergency department visit†
            Average across comorbidity statuses0.009 (.802)−0.012 (.752)
            0 Comorbidities−0.038 (.287)−0.104 (.008)
            1 Comorbidity0.062 (.143)0.100 (.057)
            ≥2 Comorbidities0.061 (.578)0.066 (.520)
    • ↵* Approximate percentage change (0.10 = 10%) in outcome variable when clinic moves from early stage to intermediate- or late-stage transformation.

    • ↵† Estimated percentage-point change (0.10 = 10 percentage points) in the probability of outcome when a clinic moves from early stage to intermediate- or late-stage transformation.

    • View popup
    Table A2.

    Marginal Effect of Increasing Maturity by Patient-Centered Medical Home Domain (Relative to Early Stage Transformation)

    Marginal Effect of Maturity on Utilization Measures (P Value)
    Intermediate-Stage DomainLate-Stage Domain
    Diabetes mellitus
        Total utilization*
            Overall impact of all domains (PPC-RS)0.040 (.407)0.079 (.151)
            Health care organization0.140 (.063)0.152 (.025)
            Delivery system redesign0.026 (.435)0.102 (.066)
            Clinical information system0.070 (.134)−0.005 (.940)
            Decision support−0.180 (.001)−0.218 (.000)
            Self-management system0.103 (.007)0.149 (.011)
        Number of prescriptions*
            Overall impact of all domains (PPC-RS)0.028 (.374)0.039 (.444)
            Health care organization−0.001 (.991)−0.001 (.985)
            Delivery system redesign0.037 (.330)0.160 (.015)
            Clinical information system0.059 (.225)0.010 (.879)
            Decision support0.012 (.816)−0.101 (.089)
            Self-management system−0.009 (.849)0.054 (.412)
        Number of outpatient visits*
            Overall impact of all domains (PPC-RS)−0.078 (.231)−0.151 (.020)
            Health care organization0.160 (.108)0.150 (.097)
            Delivery system redesign0.063 (.132)0.092 (.153)
            Clinical information system−0.083 (.101)−0.303 (.000)
            Decision support−0.137 (.160)−0.102 (.293)
            Self-management system0.085 (.047)0.093 (.168)
        ≥1 Inpatient admission†
            Overall impact of all domains (PPC-RS)0.007 (.600)0.002 (.854)
            Health care organization0.021 (.253)0.037 (.035)
            Delivery system redesign−0.003 (.749)0.005 (.674)
            Clinical information system0.019 (.117)0.004 (.758)
            Decision support−0.033 (.078)−0.038 (.045)
            Self-management system0.015 (.223)0.017 (.283)
        ≥1 Emergency department visit†
            Overall impact of all domains (PPC-RS)0.012 (.498)0.024 (.239)
            Health care organization0.025 (.099)0.027 (.068)
            Delivery system redesign0.016 (.192)−0.020 (.264)
            Clinical information system0.014 (.296)0.012 (.458)
            Decision support0.003 (.882)0.020 (.386)
            Self-management system−0.014 (.317)0.009 (.653)
    Cardiovascular disease
        Total utilization*
            Overall impact of all domains (PPC-RS)−0.035 (.607)−0.072 (.505)
            Health care organization0.041 (.696)0.003 (.976)
            Delivery system redesign0.001 (.988)−0.066 (.638)
            Clinical information system0.097 (.330)0.065 (.601)
            Decision support0.013 (.923)−0.003 (.982)
            Self-management system−0.038 (.697)−0.021 (.866)
        Number of prescriptions*
            Overall impact of all domains (PPC-RS)−0.046 (.287)−0.047 (.543)
            Health care organization−0.040 (.607)−0.014 (.855)
            Delivery system redesign−0.083 (.057)−0.149 (.072)
    Cardiovascular disease
        Number of prescriptions*
            Clinical information system0.215 (.004)0.151 (.104)
            Decision support−0.165 (.096)−0.256 (.012)
            Self-management system0.036 (.605)0.184 (.052)
        Number of outpatient visits*
            Overall impact of all domains (PPC-RS)−0.167 (.002)−0.201 (.010)
            Health care organization0.198 (.031)0.057 (.486)
            Delivery system redesign0.009 (.895)−0.141 (.209)
            Clinical information system0.006 (.964)−0.020 (.866)
            Decision support−0.133 (.343)−0.066 (.664)
            Self-management system0.027 (.757)0.036 (.770)
        ≥1 Inpatient admission†
            Overall impact of all domains (PPC-RS)0.029 (.362)−0.001 (.985)
            Health care organization−0.026 (.662)−0.033 (.554)
            Delivery system redesign0.003 (.890)−0.011 (.821)
            Clinical information system−0.013 (.713)−0.001 (.986)
            Decision support0.081 (.067)0.069 (.121)
            Self-management system−0.027 (.476)−0.042 (.353)
        ≥1 Emergency department visit†
            Overall impact of all domains (PPC-RS)0.009 (.802)−0.012 (.752)
            Health care organization−0.008 (.928)−0.013 (.873)
            Delivery system redesign−0.041 (.068)−0.017 (.641)
            Clinical information system−0.040 (.332)−0.032 (.479)
            Decision support0.109 (.033)0.105 (.032)
            Self-management system−0.027 (.497)−0.041 (.428)
    • ↵* Approximate percentage change (0.10 = 10%) in outcome variable when clinic moves from early stage to intermediate- or late-stage transformation.

    • ↵† Estimated percentage-point change (0.10 = 10 percentage points) in the probability of outcome when a clinic moves from early stage to intermediate- or late-stage transformation.

    • PPC-RS, Physician Practice Connections–Readiness Survey.

    • View popup
    Table A3.

    Marginal Effect of Increasing Maturity by Patient-Centered Medical Home Domain (Relative to Early Stage Transformation) by Patient Comorbidity Status

    Marginal Effect of Maturity on Utilization Measures (P Value)
    Intermediate-Stage DomainLate-Stage Domain
    Diabetes mellitus
        Total utilization*
            Health care organization
                Average across comorbidity statuses0.140 (.063)0.152 (.025)
                0 Comorbidities0.115 (.113)0.121 (.055)
                1 Comorbidity0.179 (.094)0.197 (.040)
                ≥ 2 Comorbidities0.279 (.054)0.336 (.028)
            Delivery system redesign
                Average across comorbidity statuses0.026 (.435)0.102 (.066)
                0 Comorbidities0.043 (.124)0.091 (.054)
                1 Comorbidity−0.007 (.906)0.097 (.222)
                ≥ 2 Comorbidities−0.016 (.907)0.234 (.301)
            Clinical information system
                Average across comorbidity statuses0.070 (.134)−0.005 (.940)
                0 Comorbidities0.062 (.171)0.011 (.830)
                1 Comorbidity0.050 (.533)−0.038 (.670)
                ≥ 2 Comorbidities0.247 (.284)−0.024 (.924)
            Decision support
                Average across comorbidity statuses−0.180 (.001)−0.218 (.000)
                0 Comorbidities−0.194 (.001)−0.248 (.000)
                1 Comorbidity−0.182 (.082)−0.204 (.098)
                ≥ 2 Comorbidities−0.063 (.797)−0.015 (.947)
            Self-management system
                Average across comorbidity statuses0.103 (.007)0.149 (.011)
                0 Comorbidities0.129 (.001)0.166 (.003)
                1 Comorbidity0.117 (.116)0.160 (.101)
                ≥ 2 Comorbidities−0.207 (.095)−0.036 (.877)
        Number of prescriptions*
            Health care organization
                Average across comorbidity statuses−0.001 (.991)−0.001 (.985)
                0 Comorbidities−0.011 (.839)−0.004 (.943)
                1 Comorbidity0.007 (.951)0.011 (.916)
                ≥ 2 Comorbidities−0.023 (.855)−0.033 (.795)
            Delivery system redesign
                Average across comorbidity statuses0.037 (.330)0.160 (.015)
                0 Comorbidities0.036 (.368)0.107 (.102)
                1 Comorbidity0.041 (.508)0.263 (.008)
                ≥ 2 Comorbidities0.101 (.179)0.383 (.001)
            Clinical information system
                Average across comorbidity statuses0.059 (.225)0.010 (.879)
                0 Comorbidities0.048 (.375)0.008 (.898)
                1 Comorbidity0.083 (.303)0.049 (.615)
                ≥ 2 Comorbidities0.035 (.737)−0.077 (.534)
            Decision support
                Average across comorbidity statuses0.012 (.816)−0.101 (.089)
                0 Comorbidities0.087 (.133)−0.060 (.328)
                1 Comorbidity−0.135 (.113)−0.184 (.055)
                ≥ 2 Comorbidities−0.194 (.026)−0.205 (.077)
    Diabetes mellitus
        Number of prescriptions*
            Self-management system
                Average across comorbidity statuses−0.009 (.849)0.054 (.412)
                0 Comorbidities−0.018 (.706)0.090 (.192)
                1 Comorbidity−0.015 (.817)−0.044 (.668)
                ≥ 2 Comorbidities0.042 (.618)−0.033 (.805)
        Number of outpatient visits*
            Health care organization
                Average across comorbidity statuses0.160 (.108)0.150 (.097)
                0 Comorbidities0.121 (.282)0.125 (.228)
                1 Comorbidity0.175 (.098)0.130 (.149)
                ≥ 2 Comorbidities0.457 (.000)0.452 (.000)
            Delivery system redesign
                Average across comorbidity statuses0.063 (.132)0.092 (.153)
                0 Comorbidities0.059 (.154)0.080 (.251)
                1 Comorbidity0.080 (.101)0.081 (.364)
                ≥ 2 Comorbidities0.064 (.482)0.325 (.019)
            Clinical information system
                Average across comorbidity statuses−0.083 (.101)−0.303 (.000)
                0 Comorbidities−0.064 (.211)−0.316 (.000)
                1 Comorbidity−0.140 (.145)−0.266 (.003)
                ≥ 2 Comorbidities−0.024 (.842)−0.258 (.063)
            Decision support
                Average across comorbidity statuses−0.137 (.160)−0.102 (.293)
                0 Comorbidities−0.162 (.174)−0.144 (.229)
                1 Comorbidity−0.100 (.374)−0.039 (.733)
                ≥ 2 Comorbidities−0.084 (.478)0.045 (.706)
            Self-management system
                Average across comorbidity statuses0.085 (.047)0.093 (.168)
                0 Comorbidities0.120 (.019)0.128 (.088)
                1 Comorbidity0.059 (.315)0.048 (.629)
                ≥ 2 Comorbidities−0.156 (.034)−0.144 (.306)
        ≥1 Inpatient admission†
            Health care organization
                Average across comorbidity statuses0.021 (.253)0.037 (.035)
                0 Comorbidities0.029 (.006)0.034 (.000)
                1 Comorbidity0.035 (.460)0.041 (.337)
                ≥ 2 Comorbidities−0.077 (.434)0.043 (.676)
            Delivery system redesign
                Average across comorbidity statuses−0.003 (.749)0.005 (.674)
                0 Comorbidities0.002 (.765)0.009 (.469)
                1 Comorbidity−0.025 (.326)−0.030 (.408)
                ≥ 2 Comorbidities−0.005 (.951)0.066 (.525)
            Clinical information system
                Average across comorbidity statuses0.019 (.117)0.004 (.758)
                0 Comorbidities−0.001 (.963)−0.006 (.643)
                1 Comorbidity0.073 (.013)0.027 (.291)
                ≥ 2 Comorbidities0.068 (.501)0.006 (.959)
    Diabetes mellitus
        ≥1 Inpatient admission†
            Decision support
                Average across comorbidity statuses−0.033 (.078)−0.038 (.045)
                0 Comorbidities−0.035 (.041)−0.024 (.175)
                1 Comorbidity−0.042 (.468)−0.103 (.080)
                ≥ 2 Comorbidities0.010 (.926)0.017 (.869)
            Self-management system
                Average across comorbidity statuses0.015 (.223)0.017 (.283)
                0 Comorbidities0.024 (.020)0.004 (.736)
                1 Comorbidity0.013 (.546)0.104 (.015)
                ≥ 2 Comorbidities−0.055 (.433)−0.062 (.595)
        ≥1 Emergency department visit†
            Health care organization
                Average across comorbidity statuses0.025 (.099)0.027 (.068)
                0 Comorbidities0.016 (.160)0.019 (.061)
                1 Comorbidity−0.002 (.959)−0.005 (.885)
                ≥ 2 Comorbidities0.228 (.006)0.210 (.009)
            Delivery system redesign
                Average across comorbidity statuses0.016 (.192)−0.020 (.264)
                0 Comorbidities0.025 (.033)−0.005 (.793)
                1 Comorbidity−0.009 (.755)−0.078 (.038)
                ≥ 2 Comorbidities−0.016 (.706)0.004 (.939)
            Clinical information system
                Average across comorbidity statuses0.014 (.296)0.012 (.458)
                0 Comorbidities0.040 (.005)0.015 (.283)
                1 Comorbidity−0.029 (.517)0.040 (.346)
                ≥ 2 Comorbidities−0.079 (.280)−0.079 (.283)
            Decision support
                Average across comorbidity statuses0.003 (.882)0.020 (.386)
                0 Comorbidities−0.047 (.005)−0.028 (.150)
                1 Comorbidity0.098 (.059)0.124 (.028)
                ≥ 2 Comorbidities0.114 (.210)0.094 (.301)
            Self-management system
                Average across comorbidity statuses−0.014 (.317)0.009 (.653)
                0 Comorbidities−0.007 (.628)0.013 (.563)
                1 Comorbidity−0.007 (.822)−0.002 (.971)
                ≥ 2 Comorbidities−0.093 (.065)−0.007 (.926)
    Cardiovascular disease
        Total utilization*
            Health care organization
                Average across comorbidity statuses0.041 (.696)0.003 (.976)
                0 Comorbidities0.056 (.733)0.021 (.896)
                1 Comorbidity−0.029 (.778)−0.042 (.663)
                ≥ 2 Comorbidities0.231 (.413)0.136 (.605)
            Delivery system redesign
                Average across comorbidity statuses0.001 (.988)−0.066 (.638)
                0 Comorbidities0.062 (.495)−0.036 (.800)
                1 Comorbidity−0.098 (.262)−0.321 (.157)
                ≥ 2 Comorbidities0.055 (.741)0.425 (.076)
    Cardiovascular disease
        Total utilization*
            Clinical information system
                Average across comorbidity statuses0.097 (.330)0.065 (.601)
                No comorbidities0.105 (.351)0.040 (.760)
                One comorbidity0.224 (.146)0.339 (.055)
                Two or more comorbidities−0.191 (.450)−0.354 (.082)
            Decision support
                Average across comorbidity statuses0.013 (.923)−0.003 (.982)
                0 Comorbidities−0.038 (.825)−0.048 (.753)
                1 Comorbidity−0.079 (.680)−0.142 (.467)
                ≥ 2 Comorbidities0.197 (.516)0.256 (.453)
            Self-management system
                Average across comorbidity statuses−0.038 (.697)−0.021 (.866)
                0 Comorbidities−0.093 (.482)−0.112 (.474)
                1 Comorbidity0.142 (.279)0.256 (.176)
                ≥ 2 Comorbidities−0.221 (.335)−0.355 (.298)
        Number of prescriptions*
            Health care organization
                Average across comorbidity statuses−0.040 (.607)−0.014 (.855)
                0 Comorbidities0.007 (.932)0.004 (.956)
                1 Comorbidity−0.058 (.535)−0.015 (.861)
                ≥ 2 Comorbidities−0.216 (.025)−0.154 (.110)
            Delivery system redesign
                Average across comorbidity statuses−0.083 (.057)−0.149 (.072)
                0 Comorbidities−0.180 (.001)−0.267 (.008)
                1 Comorbidity−0.021 (.734)−0.123 (.285)
                ≥ 2 Comorbidities0.186 (.039)0.273 (0036)
            Clinical information system
                Average across comorbidity statuses0.215 (.004)0.151 (.104)
                0 Comorbidities0.311 (.002)0.152 (.201)
                1 Comorbidity0.131 (.155)0.201 (.064)
                ≥ 2 Comorbidities−0.148 (.449)−0.004 (.981)
            Decision support
                Average across comorbidity statuses−0.165 (.096)−0.256 (.012)
                0 Comorbidities−0.196 (.127)−0.366 (.005)
                1 Comorbidity−0.154 (.192)−0.060 (.623)
                ≥ 2 Comorbidities−0.033 (.884)−0.146 (.524)
            Self-management system
                Average across comorbidity statuses0.036 (.605)0.184 (.052)
                0 Comorbidities0.068 (.413)0.372 (.002)
                1 Comorbidity0.087 (.271)−0.002 (.987)
                ≥ 2 Comorbidities−0.155 (.213)−0.261 (.217)
        Number of outpatient visits*
            Health care organization
                Average across comorbidity statuses0.198 (.031)0.057 (.486)
                0 Comorbidities0.290 (.017)0.093 (.457)
                1 Comorbidity0.068 (.611)−0.024 (.819)
                ≥ 2 Comorbidities0.378 (.165)0.348 (.184)
    Cardiovascular disease
        Number of outpatient visits*
            Delivery system redesign
                Average across comorbidity statuses0.009 (.895)−0.141 (.209)
                0 Comorbidities0.006 (.947)−0.137 (.280)
                1 Comorbidity−0.024 (.801)−0.286 (.171)
                ≥ 2 Comorbidities0.167 (.147)0.242 (.106)
            Clinical information system
                Average across comorbidity statuses0.006 (.964)−0.020 (.866)
                0 Comorbidities0.010 (.945)−0.055 (.710)
                1 Comorbidity0.080 (.609)0.107 (.514)
                ≥ 2 Comorbidities−0.205 (.393)−0.118 (.464)
            Decision support
                Average across comorbidity statuses−0.133 (.343)−0.066 (.664)
                0 Comorbidities−0.092 (.560)−0.022 (.902)
                1 Comorbidity−0.236 (.194)−0.198 (.298)
                ≥ 2 Comorbidities−0.191 (.485)−0.082 (.783)
            Self-management system
                Average across comorbidity statuses0.027 (.757)0.036 (.770)
                0 Comorbidities0.000 (.999)−0.044 (.760)
                1 Comorbidity0.155 (.156)0.276 (.098)
                ≥ 2 Comorbidities−0.145 (.376)−0.319 (.249)
        ≥1 Inpatient admission†
            Health care organization
                Average across comorbidity statuses−0.026 (.662)−0.033 (.554)
                0 Comorbidities0.001 (.987)0.003 (.964)
                1 Comorbidity−0.087 (.044)−0.095 (.016)
                ≥ 2 Comorbidities0.109 (.558)0.102 (.580)
            Delivery system redesign
                Average across comorbidity statuses0.003 (.890)−0.011 (.821)
                0 Comorbidities0.045 (.127)0.045 (.127)
                1 Comorbidity−0.057 (.083)−0.057 (.083)
                ≥ 2 Comorbidities0.018 (.804)0.018 (.804)
            Clinical information system
                Average across comorbidity statuses−0.013 (.713)−0.001 (.986)
                0 Comorbidities−0.006 (.893)0.004 (.932)
                1 Comorbidity0.044 (.388)0.112 (.025)
                ≥ 2 Comorbidities−0.089 (.359)−0.185 (.042)
            Decision support
                Average across comorbidity statuses0.081 (.067)0.069 (.121)
                0 Comorbidities0.006 (.919)0.014 (.785)
                1 Comorbidity0.124 (.050)0.041 (.529)
                ≥ 2 Comorbidities0.144 (.355)0.219 (.191)
            Self-management system
                Average across comorbidity statuses−0.027 (.476)−0.042 (.353)
                0 Comorbidities−0.036 (.458)−0.078 (.143)
                1 Comorbidity0.011 (.824)0.074 (.306)
                ≥ 2 Comorbidities−0.123 (.141)−0.225 (.092)
    Cardiovascular disease
        ≥1 Emergency department visit†
            Health care organization
                Average across comorbidity statuses−0.008 (.928)−0.013 (.873)
                0 Comorbidities−0.026 (.681)0.020 (.744)
                1 Comorbidity0.011 (.855)−0.024 (.682)
                ≥ 2 Comorbidities0.104 (.727)0.033 (.911)
            Delivery system redesign
                Average across comorbidity statuses−0.041 (.068)−0.017 (.641)
                0 Comorbidities−0.037 (.232)−0.072 (.105)
                1 Comorbidity−0.039 (.215)0.021 (.746)
                ≥ 2 Comorbidities−0.042 (.685)0.110 (.390)
            Clinical information system
                Average across comorbidity statuses−0.040 (.332)−0.032 (.479)
                0 Comorbidities0.027 (.522)0.038 (.424)
                1 Comorbidity−0.083 (.234)−0.040 (.536)
                ≥ 2 Comorbidities−0.031 (.840)−0.185 (.209)
            Decision support
                Average across comorbidity statuses0.109 (.033)0.105 (.032)
                0 Comorbidities−0.002 (.968)0.015 (.763)
                1 Comorbidity0.182 (.002)0.145 (.016)
                ≥ 2 Comorbidities0.145 (.480)0.149 (.497)
            Self-management system
                Average across comorbidity statuses−0.027 (.497)−0.041 (.428)
                0 Comorbidities−0.078 (.114)−0.130 (.014)
                1 Comorbidity0.027 (.543)0.060 (.431)
                ≥ 2 Comorbidities−0.008 (.949)0.083 (.690)
    • ↵* Approximate percentage change (0.10 = 10%) in outcome variable when a clinic moves from early stage to intermediate- or late-stage transformation.

    • ↵† Estimated percentage-point change (0.10 = 10 percentage points) in probability of outcome when a clinic moves from early stage to intermediate- or late-stage transformation.

PreviousNext
Back to top

In this issue

The Journal of the American Board of Family     Medicine: 29 (4)
The Journal of the American Board of Family Medicine
Vol. 29, Issue 4
July-August 2016
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Board of Family Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
System Transformation in Patient-Centered Medical Home (PCMH): Variable Impact on Chronically Ill Patients' Utilization
(Your Name) has sent you a message from American Board of Family Medicine
(Your Name) thought you would like to see the American Board of Family Medicine web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
System Transformation in Patient-Centered Medical Home (PCMH): Variable Impact on Chronically Ill Patients' Utilization
Caroline S. Carlin, Thomas J. Flottemesch, Leif I. Solberg, Ann M. Werner
The Journal of the American Board of Family Medicine Jul 2016, 29 (4) 482-495; DOI: 10.3122/jabfm.2016.04.150360

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
System Transformation in Patient-Centered Medical Home (PCMH): Variable Impact on Chronically Ill Patients' Utilization
Caroline S. Carlin, Thomas J. Flottemesch, Leif I. Solberg, Ann M. Werner
The Journal of the American Board of Family Medicine Jul 2016, 29 (4) 482-495; DOI: 10.3122/jabfm.2016.04.150360
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Objectives
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Appendix
    • Notes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Advancing Family Medicine in a Model Unit: A Living Lab for Health Care Design and Innovation
  • Differences in Diabetes Care With and Without Certification as a Medical Home
  • Research in Family Medicine by Family Physicians for the Practice of Family Medicine
  • Google Scholar

More in this TOC Section

  • Successful Implementation of Integrated Behavioral Health
  • Identifying and Addressing Social Determinants of Health with an Electronic Health Record
  • Integrating Adverse Childhood Experiences and Social Risks Screening in Adult Primary Care
Show more Original Research

Similar Articles

Keywords

  • Cardiovascular Diseases
  • Comorbidity
  • Cross-Sectional Studies
  • Diabetes Mellitus
  • Disease Management
  • Emergency Departments
  • Inpatients
  • Insurance Coverage
  • Minnesota
  • Outpatients
  • Patient-Centered Care
  • Research Design

Navigate

  • Home
  • Current Issue
  • Past Issues

Authors & Reviewers

  • Info For Authors
  • Info For Reviewers
  • Submit A Manuscript/Review

Other Services

  • Get Email Alerts
  • Classifieds
  • Reprints and Permissions

Other Resources

  • Forms
  • Contact Us
  • ABFM News

© 2025 American Board of Family Medicine

Powered by HighWire