Hamostaseologie 2012; 32(04): 259-270
DOI: 10.5482/ha12050001
Review
Schattauer GmbH

Inherited thrombocytopenias

The evolving spectrumErblich-bedingte ThrombozytopenienEin ganzes Spektrum erscheint
C. L. Balduini
1   Department of Internal Medicine, University of Pavia – IRCCS Policlinico San Matteo Foundation, Pavia
,
A. Pecci
1   Department of Internal Medicine, University of Pavia – IRCCS Policlinico San Matteo Foundation, Pavia
,
P. Noris
1   Department of Internal Medicine, University of Pavia – IRCCS Policlinico San Matteo Foundation, Pavia
› Author Affiliations
This work was supported by a grant of the Telethon Foundation (n° GGP10089).
Further Information

Publication History

received: 15 May 2012

accepted: 28 August 2012

Publication Date:
28 December 2017 (online)

Summary

The chapter of inherited thrombocytopenias has expanded greatly over the last decade and many “new” forms deriving from mutations in “new” genes have been identified. Nevertheless, nearly half of patients remain without a definite diagnosis because their illnesses have not yet been described. The diagnostic approach to these diseases can still take advantage of the algorithm proposed by the Italian Platelet Study Group in 2003, although an update is required to include the recently described disorders. So far, transfusions of platelet concentrates have represented the main tool for preventing or treating bleedings, while haematopoietic stem cell transplantation has been reserved for patients with very severe forms. However, recent disclosure that an oral thrombopoietin mimetic is effective in increasing platelet count in patients with MYH9-related thrombocytopenia opened new therapeutic perspectives.

This review summarizes the general aspects of inherited thrombocytopenias and describes in more detail MYH9-related diseases (encompassing four thrombocytopenias previously recognized as separate diseases) and the recently described ANKRD26-related thrombocytopenia, which are among the most frequent forms of inherited thrombocytopenia.

Zusammenfassung

Das Kapitel zu erblich bedingten Thrombozytopenien ist im vergangenen Jahrzehnt sehr umfangreich geworden, zahlreiche “neue” Formen, abgeleitet von Mutationen in “neuen” Genen, wurden identifiziert. Trotzdem bleibt fast die Hälfte der Patienten ohne korrekte Diagnose, weil ihre Erkrankungen nicht beschrieben sind. Das diagnostische Vorgehen kann zwar von dem Algorithmus profitieren, der 2003 von italienischen Thrombozyten-Forschern vorgeschlagen wurde, jedoch ist dieser unter Berücksichtigung der jüngst beschriebenen Störungen zu aktualisieren. Bisher waren Transfusionen mit Thrombozytenkonzentraten am wichtigsten zur Vorbeugung oder Behandlung von Blutungen, die Transplantation hämatopoetischer Stammzellen blieb Patienten mit sehr schweren Formen vorbehalten. Aktuell ergeben sich neue therapeutische Perspektiven für Patienten mit MYH9-assoziierter Thrombopenie, denn ein orales Thrombopoetin-Mimetikum erhöht effektiv die Thrombozytenkonzentration.

In dieser Übersicht werden allgemeine Aspekte der erblich bedingten Thrombozytopenien dargestellt. Näher erläutert werden die MYH9-assoziierten Erkrankungen (darunter vier Thrombozytopenien, die zuvor als eigenständige Krankheiten galten) und die jüngst beschriebenen ANKRD26-assoziierten Thrombozytopenien, die zu den häufigsten erblich bedingten Thrombozytopenien gehören.

Summary

The chapter of inherited thrombocytopenias has expanded greatly over the last decade and many “new” forms deriving from mutations in “new” genes have been identified. Nevertheless, nearly half of patients remain without a definite diagnosis because their illnesses have not yet been described. The diagnostic approach to these diseases can still take advantage of the algorithm proposed by the Italian Platelet Study Group in 2003, although an update is required to include the recently described disorders. So far, transfusions of platelet concentrates have represented the main tool for preventing or treating bleedings, while haematopoietic stem cell transplantation has been reserved for patients with very severe forms. However, recent disclosure that an oral thrombopoietin mimetic is effective in increasing platelet count in patients with MYH9-related thrombo cytopenia opened new therapeutic perspectives. This review summarizes the general aspects of inherited thrombocytopenias and describes in more detail MYH9-related diseases (encompassing four thrombocytopenias previously recognized as separate diseases) and the recently described ANKRD26-related thrombocytopenia, which are among the most frequent forms of inherited thrombocytopenia.

 
  • References

  • 1 Balduini CL, Pecci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 2011; 154: 161-174.
  • 2 Noris P, Perrotta S, Seri M. et al. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 2011; 117: 6673-6680.
  • 3 Pippucci T, Savoia A, Perrotta S. et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet 2011; 88: 115-120.
  • 4 The May-Hegglin/Fechtner Syndrome Consortium. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. Nat Genet 2000; 26: 103-105.
  • 5 Jackson SC, Sinclair GD, Cloutier S. et al. The Montreal platelet syndrome kindred has type 2B von Willebrand disease with the VWF V1316M mutation. Blood 2009; 113: 3348-3351.
  • 6 Rees DC, Iolascon A, Carella M. et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol 2005; 130: 297-309.
  • 7 Savoia A, Balduini CL, Savino M. et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001; 97: 1330-1335.
  • 8 Noris P, Pecci A, Di Bari F. et al. Application of a diagnostic algorithm for inherited thrombocytopenias to 46 consecutive patients. Haematologica 2004; 89: 1219-1225.
  • 9 Balduini CL, Cattaneo M, Fabris F. et al. Inherited thrombocytopenias: proposal of a diagnostic algorithm by the Italian “Gruppo di studio delle piastrine”. Haematologica 2003; 88: 582-592.
  • 10 Savoia A, Pastore A, De Rocco D. et al. Clinical and genetic aspects Bernard-Soulier syndrome: searching for genotype/phenotype correlations. Haematologica 2011; 96: 417-423.
  • 11 Noris P, Perrotta S, Bottega R. et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIb{alpha} (Bolzano mutation). Haematologica 2012; 97: 82-88.
  • 12 Thon JN, Italiano JE. Platelet formation. Semin Hematol 2010; 47: 220-226.
  • 13 Ciovacco WA, Raskind WH, Kacena MA. Human phenotypes associated with GATA-1 mutations. Gene 2008; 427: 1-6.
  • 14 Balduini CL, Pecci A, Loffredo G. et al. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 2004; 91: 129-140.
  • 15 Balduini A, Malara A, Balduini CL. et al. Megakaryocytes derived from patients with the classical form of Bernard-Soulier syndrome show no ability to extend proplatelets in vitro. Platelets 2011; 22: 308-311.
  • 16 Balduini A, Malara A, Pecci A. et al. Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano. J Thromb Haemost 2009; 07: 478-484.
  • 17 Pecci A, Malara A, Badalucco S. et al. Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. Thromb Haemost 2009; 102: 90-96.
  • 18 Geddis AE. Congenital amegakaryocytic thrombocytopenia. Pediatr Blood Cancer 2011; 57: 199-203.
  • 19 Castillo-Caro P, Dhanraj S, Haut P. et al. Proximal radio-ulnar synostosis with bone marrow failure syndrome in an infant without a HOXA11 mutation. J Pediatr Hematol Oncol 2010; 32: 479-485.
  • 20 Liew E, Owen C. Familial myelodysplastic syndromes: a review of the literature. Haematologica 2011; 96: 1536-1542.
  • 21 Geddis AE, Balduini CL. Diagnosis of immune thrombocytopenic purpura in children. Current Opinion Hematol 2007; 14: 520-525.
  • 22 Noris P, Klersy C, Zecca M. et al. Platelet size distinguishes between inherited macrothrombocytopenias and immune thrombocytopenia. J Thromb Haemost 2009; 07: 2131-2136.
  • 23 Pecci A, Gresele P, Klersy C. et al. Eltrombopag for the treatment of the inherited thrombocytopenia deriving from MYH9 mutations. Blood 2010; 116: 5832-5837.
  • 24 Pai SY, DeMartiis D, Forino C. et al. Stem cell transplantation for the Wiskott-Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation. Bone Marrow Transplant 2006; 38: 671-679.
  • 25 Locatelli F, Rossi G, Balduini C. Hematopoietic stem-cell transplantation for the Bernard-Soulier syndrome. Ann Intern Med 2003; 138: 79.
  • 26 Kelley MJ, Jawien W, Ortel TL. et al. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet 2000; 26: 106-108.
  • 27 Kunishima S, Kojima T, Matsushita T. et al. Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome). Blood 2001; 97: 1147-1149.
  • 28 Seri M, Pecci A, Di Bari F. et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine 2003; 82: 203-215.
  • 29 Heath KE, Campos-Barros A, Toren A. et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 2001; 69: 1033-1045.
  • 30 Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta 2000; 1496: 3-22.
  • 31 Niederman R, Pollard TD. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J Cell Biol 1975; 67: 72-92.
  • 32 Ronen D, Ravid S. Myosin II tailpiece determines its paracrystal structure, filament assembly properties, and cellular localization. J Biol Chem 2009; 284: 24948-24957.
  • 33 Pecci A, Canobbio I, Balduini A. et al. Pathogenetic mechanisms of haematological abnormalities of patients with MYH9 mutations. Hum Mol Genet 2005; 14: 3169-3178.
  • 34 Chang Y, Auradé F, Larbret F. et al. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood 2007; 109: 4229-4236.
  • 35 Chen Z, Naveiras O, Balduini A. et al. The May- Hegglin anomaly gene Myh9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 2007; 100: 171-179.
  • 36 Balduini A, Pallotta I, Malara A. et al. Adhesive receptors, extracellular proteins, and myosin IIA orchestrate proplatelet formation by human megakaryocytes. J Thromb Haemost 2008; 06: 1900-1907.
  • 37 Eckly A, Strassel C, Freund M. et al. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation. Blood 2009; 113: 3182-3189.
  • 38 Larson MK, Watson SP. A product of their environment: do megakaryocytes rely on extracellular cues for proplatelet formation?. Platelets 2006; 17: 435-440.
  • 39 Conti MA, Even-Ram S, Liu C. et al. Defects in cell adhesion and the visceral endoderm following ablation of non-muscle myosin heavy chain II-A in mice. J Biol Chem 2004; 279: 41263-41266.
  • 40 Zhang Y, Conti MA, Malide D. et al. Mouse models of MYH9-related disease: mutations in non-muscle myosin II-A. Blood 2012; 119: 238-250.
  • 41 Pecci A, Bozzi V, Panza E. et al. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2011; 106: 693-704.
  • 42 Savoia A, De Rocco D, Panza E. et al. Heavy chain myosin 9-related disease (MYH9 -RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. Thromb Haemost 2010; 103: 826-832.
  • 43 Pecci A, Panza E, Pujol-Moix N. et al. Position of non-muscle myosin heavy chain IIA (NMMHCIIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat 2008; 29: 409-417.
  • 44 Dong F, Li S, Pujol-Moix N. et al. Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br J Haematol 2005; 130: 620-627.
  • 45 Ghiggeri GM, Caridi G, Magrini U. et al. Genetics, clinical and pathological features of glomerulonephritis associated with mutations of non-muscle myosin IIA (Fechtner syndrome). Am J Kidney Dis 2003; 41: 95-104.
  • 46 Pecci A, Granata A, Fiore CE. et al. Renin-angiotensin system blockade is effective in reducing proteinuria of patients with progressive nephropathy caused by MYH9 mutations (Fechtner-Epstein syndrome). Nephrol Dial Transplant 2008; 23: 2690-2692.
  • 47 Sekine T, Konno M, Sasaki S. et al. Patients with Epstein-Fechtner syndromes owing to MYH9 R702 mutations develop progressive proteinuric renal disease. Kidney Int 2010; 78: 207-214.
  • 48 Han KH, Lee H, Kang HG. et al. Renal manifestations of patients with MYH9-related disorders. Pediatr Nephrol 2011; 26: 549-555.
  • 49 De Rocco D, Pujol-Moix N, Pecci A. et al. Identification of the first duplication in MYH9-related disease: A hot spot for hot unequal crossing-over within exon 24 of the MYH9 gene. Eur J Med Genet 2009; 52: 191-194.
  • 50 Pecci A, Noris P, Invernizzi R. et al. Immunocytochemistry for the heavy chain of the non-muscle myosin IIA as a diagnostic tool for MYH9-related disorders. Br J Haematol 2002; 117: 164-167.
  • 51 Kunishima S, Matsushita T, Yoshihara T. et al. First description of somatic mosaicism in MYH9 disorders. Br J Haematol 2005; 128: 360-365.
  • 52 Pecci A, Panza E, De Rocco D. et al. MYH9 related disease: four novel mutations of the tail domain of myosin-9 correlating with a mild clinical phenotype. Eur J Haematol 2010; 84: 291-297.
  • 53 Canobbio I, Noris P, Pecci A. et al. Altered cytoskeleton organization in platelets from patients with MYH9-related disease. J Thromb Haemost 2005; 03: 1026-1035.
  • 54 Liumbruno G, Bennardello F, Lattanzio A. et al. Recommendations for the transfusion of plasma and platelets. Blood Transfus 2009; 07: 132-150.
  • 55 Savoia A, Del Vecchio M, Totaro A. et al. An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p. Am J Hum Genet 1999; 65: 1401-1405.
  • 56 Drachman JG, Jarvik GP, Mehaffey MG. Autosomal dominant thrombocytopenia: incomplete megakaryocyte differentiation and linkage to human chromosome 10. Blood 2000; 96: 118-125.
  • 57 Gandhi MJ, Cummings CL, Drachman JG. FLJ14813 missense mutation: a candidate for autosomal dominant thrombocytopenia on human chromosome 10. Hum Hered 2003; 55: 66-70.
  • 58 Punzo F, Mientjes EJ, Rohe CF. et al. A mutation in the acyl-coenzyme A binding domain containing protein 5 gene (ACBD5) identified in autosomal dominant thrombocytopenia. J Thromb Haemost 2010; 08: 2085-2087.
  • 59 Hahn Y, Bera TK, Pastan IH. et al. Duplication and extensive remodeling shaped POTE family genes encoding proteins containing ankyrin repeat and coiled coil domains. Gene 2006; 66: 238-245.
  • 60 Bera TK, Liu XF, Yamada M. et al. A model for obesity and gigantism due to disruption of the Ankrd26 gene. Proc Natl Acad Sci USA 2008; 105: 270-275.
  • 61 Raciti GA, Bera TK, Gavrilova O. et al. Partial inactivation of Ankrd26 causes diabetes with enhanced insulin responsiveness of adipose tissue in mice. Diabetologia 2011; 54: 2911-2922.
  • 62 Wheeler DA, Srinivasan M, Egholm M. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008; 452: 872-876.
  • 63 Mardis E, Ding L, Dooling DJ. et al. Recurrent mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058-1066.
  • 64 Mattina T, Perrotta CS, Grossfeld P. Jacobsen syndrome. Orphanet J Rare Dis 2009; 04: 9.
  • 65 Gunay-Aygun M, Zivony-Elboum Y, Gumruk F. et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116: 4990-5001.
  • 66 Kahr WH, Hinckley J, Li L. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011; 43: 738-740.
  • 67 Gunay-Aygun M, Falik-Zaccai TC, Vilboux T. et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet a-granules. Nat Genet 2011; 43: 732-734.
  • 68 Albers CA, Cvejic A, Favier R. et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011; 43: 735-737.
  • 69 Hamilton A, Ozelo M, Leggo J. et al. Frequency of platelet type versus type 2B von Willebrand disease. An international registry-based study. Thromb Haemost 2011; 105: 501-508.
  • 70 Gresele P, Falcinelli E, Giannini S. et al. Dominant inheritance of a novel integrin beta3 mutation associated with a hereditary macrothrombocytopenia and platelet dysfunction in two Italian families. Haematologica 2009; 94: 663-669.
  • 71 Kunishima S, Kobayashi R, Itoh TJ. et al. Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 2009; 113: 458-461.
  • 72 Nurden P, Debili N, Coupry I. et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 2011; 118: 5928-5937.
  • 73 Albers CA, Paul DS, Schulze H. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44: 435-439.
  • 74 Morison IM, Cramer EMBordé, Cheesman EJ. et al. A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 2008; 40: 387-389.
  • 75 Notarangelo LD, Miao CH, Ochs HD. Wiskott-Aldrich syndrome. Curr Opin Hematol 2008; 15: 30-36.