Skip to main content
Log in

New Drugs for Type 2 Diabetes Mellitus

What is their Place in Therapy?

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulfonylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women.

Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagon-like peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on β cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and body weight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-α/γ agonists, or glitazars, is presently uncertain following concerns about their safety.

In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047–53

    Article  PubMed  Google Scholar 

  2. Fox CS, Pencina MJ, Meigs JB, et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation 2006; 113(25): 2914–8

    Article  PubMed  Google Scholar 

  3. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 328(23): 1676–85

    Article  PubMed  CAS  Google Scholar 

  4. Booth GL, Kapral MK, Fung K, et al. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 2006; 368(9529): 29–36

    Article  PubMed  Google Scholar 

  5. Pinhas-Hamiel O, Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet 2007; 369(9575): 1823–31

    Article  PubMed  Google Scholar 

  6. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998: 352(9131): 837–53

    Article  Google Scholar 

  7. Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999; 281(21): 2005–12

    CAS  Google Scholar 

  8. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457–71

    Article  PubMed  CAS  Google Scholar 

  9. Williams R, Van Gaal L, Lucioni C. Assessing the impact of complications on the costs of type II diabetes. Diabetologia 2002; 45(7): S13–7

    PubMed  CAS  Google Scholar 

  10. Scheen AJ. Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes? Diabetes Metab 2007; 33(1): 3–12

    Article  PubMed  CAS  Google Scholar 

  11. Krentz AJ, Bailey CJ. Type 2 diabetes in practice. 2nd ed. London: Royal Society of Medicine Press, 2005

    Google Scholar 

  12. Leiter LA. Beta-cell preservation: a potential role for thiazolidinediones to improve clinical care in type 2 diabetes. Diabet Med 2005; 22(8): 963–72

    Article  PubMed  CAS  Google Scholar 

  13. Evans A, Krentz AJ. Benefits and risks of transfer from oral agents to insulin in type 2 diabetes mellitus. Drug Saf 1999; 21(1): 7–22

    Article  PubMed  CAS  Google Scholar 

  14. Nelson SE, Palumbo PJ. Addition of insulin to oral therapy in patients with type 2 diabetes. Am J Med Sci 2006; 331(5): 257–63

    Article  PubMed  Google Scholar 

  15. Hirsch IB. Insulin analogues. N Engl J Med 2005; 352(2): 174–83

    Article  PubMed  CAS  Google Scholar 

  16. Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001; 86(7): 3257–65

    Article  PubMed  CAS  Google Scholar 

  17. Langouche L, Vanhorebeek I, Van den Berghe G. Therapy insight: the effect of tight glycemic control in acute illness. Nat Clin Pract 2007; 3(3): 270–8

    Article  Google Scholar 

  18. Riddle MC. Making the transition from oral to insulin therapy. Am J Med 2005; 118 Suppl. 5A: 14–20S

    Article  CAS  Google Scholar 

  19. Mooradian AD, Bernbaum M, Albert SG. Narrative review: a rational approach to starting insulin therapy. Ann Intern Med 2006; 145(2): 125–34

    PubMed  CAS  Google Scholar 

  20. Uwaifo GI, Ratner RE. Novel pharmacologic agents for type 2 diabetes. Endocrinol Metab Clin North Am 2005; 34(1): 155–97

    Article  PubMed  CAS  Google Scholar 

  21. Bailey CJ, Barnett AH, Day C. Exubera expires. Br J Diabetes Vasc Dis 2007; 7: 255–6

    Article  Google Scholar 

  22. Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001; 414(6865): 821–7

    Article  PubMed  CAS  Google Scholar 

  23. Nourparvar A, Bulotta A, Di Mario U, et al. Novel strategies for the pharmacological management of type 2 diabetes. Trends Pharmacol Sci 2004; 25(2): 86–91

    Article  PubMed  CAS  Google Scholar 

  24. Lebovitz H. Diabetes: assessing the pipeline. Atheroscler 2006; 7 (1 Suppl.): 43–9

    Article  Google Scholar 

  25. Agius L. New hepatic targets for glycaemic control in diabetes. Best Pract Res 2007; 21(4): 587–605

    Article  CAS  Google Scholar 

  26. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy — a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006; 29(8): 1963–72

    Article  PubMed  Google Scholar 

  27. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy — update regarding thiazolidinediones (a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes). Diabetes Care 2008; 31(1): 173–5

    Article  PubMed  Google Scholar 

  28. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334(9): 574–9

    Article  PubMed  CAS  Google Scholar 

  29. Holstein A, Stumvoll M. Contraindications can damage your health: is metformin a case in point? Diabetologia 2005; 48(12): 2454–9

    Article  PubMed  CAS  Google Scholar 

  30. Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 2006; 49(3): 434–41

    Article  PubMed  CAS  Google Scholar 

  31. Dandona P, Aljada A, Chaudhuri A, et al. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J Clin Endocrinol Metab 2003; 88(6): 2422–9

    Article  PubMed  CAS  Google Scholar 

  32. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854–65

    Article  Google Scholar 

  33. Krentz AJ. UKPDS and beyond: into the next millennium. United Kingdom Prospective Diabetes Study. Diabetes Obes Metab 1999; 1(1): 13–22

    CAS  Google Scholar 

  34. Grant PJ. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab 2003; 29 (4 Pt 2): S44–52

    Article  Google Scholar 

  35. Colwell JA. Treatment for the procoagulant state in type 2 diabetes. Endocrinol Metab Clin North Am 2001; 30(4): 1011–30

    Article  PubMed  CAS  Google Scholar 

  36. Johnson JA, Majumdar SR, Simpson SH, et al. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002; 25(12): 2244–8

    Article  PubMed  CAS  Google Scholar 

  37. Benavides S, Striet J, Germak J, et al. Efficacy and safety of hypoglycemic drugs in children with type 2 diabetes mellitus. Pharmacotherapy 2005; 25(6): 803–9

    Article  PubMed  CAS  Google Scholar 

  38. Willey CJ, Andrade SE, Cohen J, et al. Polypharmacy with oral antidiabetic agents: an indicator of poor glycemic control. Am J Manag Care 2006; 12(8): 435–40

    PubMed  Google Scholar 

  39. Heller S. Weight gain during insulin therapy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2004; 65 Suppl. 1: S23-7

    Google Scholar 

  40. Yki-Jarvinen H, Ryysy L, Nikkila K, et al. Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus: a randomized, controlled trial. Ann Intern Med 1999; 130(5): 389–96

    PubMed  CAS  Google Scholar 

  41. Yki-Jarvinen H, Kauppinen-Makelin R, Tiikkainen M, et al. Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANMET study. Diabetologia 2006; 49(3): 442–51

    Article  PubMed  CAS  Google Scholar 

  42. Holman RR, Thorne KI, Farmer AJ, et al. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med 2007; 357(17): 1716–30

    Article  PubMed  CAS  Google Scholar 

  43. Blonde L, Dailey GE, Jabbour SA, et al. Gastrointestinal tolerability of extended-release metformin tablets compared to immediate-release metformin tablets: results of a retrospective cohort study. Curr Med Res Opin 2004; 20(4): 565–72

    Article  PubMed  CAS  Google Scholar 

  44. Holman RR. Long-term efficacy of sulfonylureas: a United Kingdom Prospective Diabetes Study perspective. Metabolism 2006; 55 (5 Suppl. 1): S2-5

    Google Scholar 

  45. Dean T. Prescribing of insulins and oral diabetic drugs. Prescriber 2005; 16(24): 28–30

    Google Scholar 

  46. Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11(4): 223–41

    Article  PubMed  CAS  Google Scholar 

  47. Evans JM, Ogston SA, Emslie-Smith A, et al. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 2006; 49(5): 930–6

    Article  PubMed  CAS  Google Scholar 

  48. Evans AJ, Krentz, AJ. Glimepiride: a new sulphonylurea. Prescriber 1999; (10): 51–8

  49. Krentz AJ. Sulfonylureas in the prevention of vascular complications: from UKPDS to the ADVANCE study. In: Crepaldi GT, Avogaro A, editors. The metabolic syndrome: diabetes, obesity, hyperlipidemia and hypertension. Amsterdam: Excerpta Medica International Conference Series, 2002: 261–77

  50. Schernthaner G, Grimaldi A, Di Mario U, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 2004; 34(8): 535–42

    Article  PubMed  CAS  Google Scholar 

  51. Study rationale and design of ADVANCE: action in diabetes and vascular disease: preterax and diamicron MR controlled evaluation. Diabetologia 2001; 44(9): 1118–20

    Article  Google Scholar 

  52. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358(24): 2560–72

    Article  PubMed  CAS  Google Scholar 

  53. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545–59

    Article  PubMed  CAS  Google Scholar 

  54. Gerstein HC, Riddle MC, Kendall DM, et al. Glycemia treatment strategies in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007; 99(12A): 34–43i

    Article  Google Scholar 

  55. Dluhy RG, McMahon GT. Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med 2008; 358(24): 2630–3

    Article  PubMed  CAS  Google Scholar 

  56. Home P. Safety of very tight blood glucose control in type 2 diabetes. Br Med J 2008; 336(7642): 458–9

    Article  Google Scholar 

  57. Landgraf R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging 2000; 17(5): 411–25

    Article  PubMed  CAS  Google Scholar 

  58. Dornhorst A. Insulinotropic meglitinide analogues. Lancet 2001; 358(9294): 1709–16

    Article  PubMed  CAS  Google Scholar 

  59. Hasslacher C. Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renal function. Diabetes Care 2003; 26(3): 886–91

    Article  PubMed  CAS  Google Scholar 

  60. Blickle JF. Meglitinide analogues: a review of clinical data focused on recent trials. Diabetes Metab 2006; 32(2): 113–20

    Article  PubMed  CAS  Google Scholar 

  61. Ceriello A. The post-prandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab Res Rev 2000; 16(2): 125–32

    Article  PubMed  CAS  Google Scholar 

  62. Scheen AJ. Clinical efficacy of acarbose in diabetes mellitus: a critical review of controlled trials. Diabetes Metab 1998; 24(4): 311–20

    PubMed  CAS  Google Scholar 

  63. Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 1999; 22(6): 960–4

    PubMed  CAS  Google Scholar 

  64. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411

    Article  PubMed  CAS  Google Scholar 

  65. van de Laar FA, Lucassen PL, Akkermans RP, et al. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005; 28(1): 154–63

    Article  PubMed  Google Scholar 

  66. Chiasson JL, Josse RG, Gomis R, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002; 359(9323): 2072–7

    Article  PubMed  CAS  Google Scholar 

  67. Kaiser T, Sawicki PT. Acarbose for prevention of diabetes, hypertension and cardiovascular events? A critical analysis of the STOP-NIDDM data. Diabetologia 2004; 47(3): 575–80

    Article  PubMed  CAS  Google Scholar 

  68. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004; 351(11): 1106–18

    Article  PubMed  Google Scholar 

  69. Richter B, Bandeira-Echtler E, Bergerhoff K, et al. Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev 2006; (4): CD006060

  70. Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med 1999; 16(3): 179–92

    Article  PubMed  CAS  Google Scholar 

  71. Semple RK, Chatterjee VK, O’Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest 2006; 116(3): 581–9

    Article  PubMed  CAS  Google Scholar 

  72. Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86(3): 1306–12

    Article  PubMed  CAS  Google Scholar 

  73. Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89(6): 2728–35

    Article  PubMed  CAS  Google Scholar 

  74. LeBrasseur NK, Kelly M, Tsao TS, et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 2006; 291(1): E175–81

    Article  PubMed  CAS  Google Scholar 

  75. Colca JR, Kletzien RF. What has prevented the expansion of insulin sensitisers? Expert Opin Investig Drugs 2006; 15(3): 205–10

    Article  PubMed  CAS  Google Scholar 

  76. Basu A, Jensen MD, McCann F, et al. Effects of pioglitazone versus glipizide on body fat distribution, body water content, and hemodynamics in type 2 diabetes. Diabetes Care 2006; 29(3): 510–4

    Article  PubMed  CAS  Google Scholar 

  77. Martens FM, Visseren FL, Lemay J, et al. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62(10): 1463–80

    Article  PubMed  CAS  Google Scholar 

  78. Yki-Jarvinen H. The PROactive study: some answers, many questions. Lancet 2005; 366(9493): 1241–2

    Article  PubMed  Google Scholar 

  79. Knowler WC, Hamman RF, Edelstein SL, et al., for the Diabetes Prevention Program Research Group. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 2005; 54: 1150–6

    Article  PubMed  Google Scholar 

  80. Gerstein HC, Yusuf S, Holman R, et al. Rationale, design and recruitment characteristics of a large, simple international trial of diabetes prevention: the DREAM trial. Diabetologia 2004; 47(9): 1519–27

    Article  PubMed  CAS  Google Scholar 

  81. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006; 368: 1096–105

    Article  CAS  Google Scholar 

  82. Bell DS. Beta-cell rejuvenation with thiazolidinediones. Am J Med 2003; 115 Suppl. 8A: 20–3S

    Article  Google Scholar 

  83. Murphy CE, Rodgers PT. Effects of thiazolidinediones on bone loss and fracture. Annals Pharmacother 2007; 41(12): 2014–8

    Article  CAS  Google Scholar 

  84. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355(23): 2427–43

    Article  PubMed  CAS  Google Scholar 

  85. Psaty BM, Furberg CD. The record on rosiglitazone and the risk of myocardial infarction. N Engl J Med 2007; 357(1): 67–9

    Article  PubMed  CAS  Google Scholar 

  86. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes: an interim analysis. N Engl J Med 2007; 357(1): 28–38

    Article  PubMed  CAS  Google Scholar 

  87. Mannucci E, Monami M, Lamanna C, et al. Pioglitazone and cardiovascular risk: a comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab. Epub 2008 May 26

  88. Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 2007; 370(9593): 1129–36

    Article  PubMed  CAS  Google Scholar 

  89. Goldberg RB. Impact of thiazolidinediones on serum lipoprotein levels. Curr Atheroscler Rep 2006; 8(5): 397–404

    Article  PubMed  CAS  Google Scholar 

  90. Betteridge DJ. Effects of pioglitazone on lipid and lipoprotein metabolism. Diabetes Obes Metab 2007; 9(5): 640–7

    Article  PubMed  CAS  Google Scholar 

  91. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008 Apr 2; 299(13): 1561–73

    Article  PubMed  CAS  Google Scholar 

  92. Krentz AJ. Management of type 2 diabetes in the obese patient: current concerns and emerging therapies. Curr Med Res Opin 2008; 24(2): 401–17

    PubMed  CAS  Google Scholar 

  93. Ahren B. Gut peptides and type 2 diabetes mellitus treatment. Curr Diab Rep 2003; 3(5): 365–72

    Article  PubMed  Google Scholar 

  94. Drucker DJ. Minireview: the glucagon-like peptides. Endocrinology 2001; 142(2): 521–7

    Article  PubMed  CAS  Google Scholar 

  95. Meier JJ, Nauck MA. Incretins and the development of type 2 diabetes. Curr Diab Rep 2006; 6(3): 194–201

    Article  PubMed  CAS  Google Scholar 

  96. Edwards CM, Todd JF, Mahmoudi M, et al. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes 1999; 48(1): 86–93

    Article  PubMed  CAS  Google Scholar 

  97. Shah P, Vella A, Basu A, et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 2000; 85(11): 4053–9

    Article  PubMed  CAS  Google Scholar 

  98. Dunning BE, Foley JE, Ahren B. Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 2005; 48(9): 1700–13

    Article  PubMed  CAS  Google Scholar 

  99. Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002; 87(3): 1239–46

    Article  PubMed  CAS  Google Scholar 

  100. Brubaker PL, Drucker DJ. Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004; 145(6): 2653–9

    Article  PubMed  CAS  Google Scholar 

  101. Holst JJ. Glucagon-like peptide-1: from extract to agent — the Claude Bernard Lecture, 2005. Diabetologia 2006; 49(2): 253–60

    Article  PubMed  CAS  Google Scholar 

  102. Weber AE. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J Med Chem 2004; 47(17): 4135–41

    Article  PubMed  CAS  Google Scholar 

  103. Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005; 54(1): 146–51

    Article  PubMed  CAS  Google Scholar 

  104. Ahren B. GLP-1 and extra-islet effects. Horm Metab Res 2004; 36(11–12): 842–5

    Article  PubMed  CAS  Google Scholar 

  105. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109(8): 962–5

    Article  PubMed  CAS  Google Scholar 

  106. Kendall DM, Kim D, Maggs D. Incretin mimetics and dipeptidyl peptidase-IV inhibitors: a review of emerging therapies for type 2 diabetes. Diabetes Technol Ther 2006; 8(3): 385–96

    Article  PubMed  CAS  Google Scholar 

  107. Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom: further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 1992; 267(11): 7402–5

    PubMed  CAS  Google Scholar 

  108. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696–705

    Article  PubMed  CAS  Google Scholar 

  109. Linnebjerg H, Kothare PA, Skrivanek Z, et al. Exenatide: effect of injection time on postprandial glucose in patients with type 2 diabetes. Diabet Med 2006; 23(3): 240–5

    Article  PubMed  CAS  Google Scholar 

  110. Briones M, Bajaj M. Exenatide: a GLP-1 receptor agonist as novel therapy for type 2 diabetes mellitus. Expert Opin Pharmacother 2006; 7(8): 1055–64

    Article  PubMed  CAS  Google Scholar 

  111. Baggio LL, Drucker DJ. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu Rev Med 2006; 57: 265–81

    Article  PubMed  CAS  Google Scholar 

  112. Iltz JL, Baker DE, Setter SM, et al. Exenatide: an incretin mimetic for the treatment of type 2 diabetes mellitus. Clin Ther 2006; 28(5): 652–65

    Article  PubMed  CAS  Google Scholar 

  113. Zinman B, Hoogwerf BJ, Duran Garcia S, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2007; 146(7): 477–85

    PubMed  Google Scholar 

  114. Barnett AH, Burger J, Johns D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial. Clin Ther 2007; 29(11): 2333–48

    Article  PubMed  CAS  Google Scholar 

  115. Heine RJ, Van Gaal LF, Johns D, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005; 143(8): 559–69

    PubMed  CAS  Google Scholar 

  116. Nauck MA, Duran S, Kim D, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 2007; 50(2): 259–67

    Article  PubMed  CAS  Google Scholar 

  117. Frias JP, Edelman SV. Incretins and their role in the management of diabetes. Curr Opin Endocrinol Diabetes Obes 2007; 14(4): 269–76

    Article  PubMed  CAS  Google Scholar 

  118. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007; 298(2): 194–206

    Article  PubMed  CAS  Google Scholar 

  119. Barnett A. Exenatide. Expert Opin Pharmacother 2007; 8(15): 2593–608

    Article  PubMed  CAS  Google Scholar 

  120. Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 2008; 24(1): 275–86

    PubMed  CAS  Google Scholar 

  121. DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005; 28(5): 1092–100

    Article  PubMed  CAS  Google Scholar 

  122. Kim D, MacConell L, Zhuang D, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007; 30(6): 1487–93

    Article  PubMed  CAS  Google Scholar 

  123. Driver and Vehicle Licensing Agency. Treatment with exenatide (byetta) or gliptins [online]. Available from URL: http://www.dvla.gov.uk/medical/Treatment%20with%20Exenatide.aspx [Accessed 2008 Aug 6]

  124. Madsbad S, Schmitz O, Ranstam J, et al. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004; 27(6): 1335–42

    Article  PubMed  CAS  Google Scholar 

  125. Vilsboll T. Liraglutide: a once-daily GLP-1 analogue for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 2007; 16(2): 231–7

    Article  PubMed  CAS  Google Scholar 

  126. Feinglos MN, Saad MF, Pi-Sunyer FX, et al. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on glycaemic control and bodyweight in subjects with type 2 diabetes. Diabet Med 2005; 22(8): 1016–23

    Article  PubMed  CAS  Google Scholar 

  127. Vilsboll T, Zdravkovic M, Le-Thi T, et al. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as mono-therapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 2007; 30(6): 1608–10

    Article  PubMed  CAS  Google Scholar 

  128. Vella A, Bock G, Giesler PD, et al. Effects of dipeptidyl peptidase-4 inhibition on gastrointestinal function, meal appearance, and glucose metabolism in type 2 diabetes. Diabetes 2007; 56(5): 1475–80

    Article  PubMed  CAS  Google Scholar 

  129. Bosi E, Camisasca RP, Collober C, et al. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care 2007; 30(4): 890–5

    Article  PubMed  CAS  Google Scholar 

  130. Raz I, Hanefeld M, Xu L, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006; 49(11): 2564–71

    Article  PubMed  CAS  Google Scholar 

  131. Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 2006; 60(11): 1454–70

    Article  PubMed  CAS  Google Scholar 

  132. Pratley RE, Jauffret-Kamel S, Galbreath E, et al. Twelve-week monotherapy with the DPP-4 inhibitor vildagliptin improves glycemic control in subjects with type 2 diabetes. Horm Metab Res 2006; 38(6): 423–8

    Article  PubMed  CAS  Google Scholar 

  133. Nauck MA, Meininger G, Sheng D, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 2007; 9(2): 194–205

    Article  PubMed  CAS  Google Scholar 

  134. Greene BD, Flatt PR, Bailey CJ. Inhibition of dipeptidyl peptidase IV activity as therapy for type 2 diabetes. Expert Opin Emerg Drugs 2006; 11(3): 525–39

    Article  Google Scholar 

  135. Garber AJ, Sharma MD. Update: vildagliptin for the treatment of type 2 diabetes. Expert Opin Investig Drugs 2008; 17(1): 105–13

    Article  PubMed  CAS  Google Scholar 

  136. Green BD, Flatt PR, Bailey CJ. Inhibition of dipeptidylpeptidase IV activity as a therapy of type 2 diabetes. Expert Opin Emerg Drugs 2006; 11(3): 525–39

    Article  PubMed  CAS  Google Scholar 

  137. Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab 2008 May; 10(5): 376–86

    Article  PubMed  CAS  Google Scholar 

  138. Charbonnel B, Karasik A, Liu J, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 2006; 29(12): 2638–43

    Article  PubMed  CAS  Google Scholar 

  139. Rosenstock J, Brazg R, Andryuk PJ, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2006; 28(10): 1556–68

    Article  PubMed  CAS  Google Scholar 

  140. Hermansen K, Kipnes M, Luo E, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab 2007; 9(5): 733–45

    Article  PubMed  CAS  Google Scholar 

  141. Mistry G, Maes AL, Lasseter KC, et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol 2008 May; 48(5): 592–8

    Article  PubMed  CAS  Google Scholar 

  142. Mari A, Scherbaum WA, Nilsson PM, et al. Characterization of the influence of vildagliptin on model-assessed cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab 2008; 93(1): 103–9

    Article  PubMed  CAS  Google Scholar 

  143. Matikainen N, Manttari S, Schweizer A, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 2006; 49(9): 2049–57

    Article  PubMed  CAS  Google Scholar 

  144. Ahren B, Gomis R, Standl E, et al. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004; 27(12): 2874–80

    Article  PubMed  CAS  Google Scholar 

  145. Ahren B, Pacini G, Tura A, et al. Improved meal-related insulin processing contributes to the enhancement of B-cell function by the DPP-4 inhibitor vildagliptin in patients with type 2 diabetes. Horm Metab Res 2007; 39(11): 826–9

    Article  PubMed  CAS  Google Scholar 

  146. Ahren B, Pacini G, Foley JE, et al. Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care 2005; 28(8): 1936–40

    Article  PubMed  CAS  Google Scholar 

  147. Azuma K, Radikova Z, Mancino J, et al. Measurements of islet function and glucose metabolism with the dipeptidyl peptidase 4 inhibitor vildagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab 2008; 93(2): 459–64

    Article  PubMed  CAS  Google Scholar 

  148. Garber AJ, Foley JE, Banerji MA, et al. Effects of vildagliptin on glucose control in patients with type 2 diabetes inadequately controlled with a sulphonylurea. Diabetes Obes Metab. Epub 2008 Feb 18

  149. El-Ouaghlidi A, Rehring E, Holst JJ, et al. The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion. J Clin Endocrinol Metab 2007; 92(11): 4165–71

    Article  PubMed  CAS  Google Scholar 

  150. Fonseca V, Schweizer A, Albrecht D, et al. Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia 2007; 50(6): 1148–55

    Article  PubMed  CAS  Google Scholar 

  151. Rosenstock J, Foley JE, Rendell M, et al. Effects of the dipeptidyl peptidase-IV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance. Diabetes Care 2008; 31(1): 30–5

    Article  PubMed  CAS  Google Scholar 

  152. He YL, Sabo R, Campestrini J, et al. The effect of age, gender, and body mass index on the pharmacokinetics and pharmacodynamics of vildagliptin in healthy volunteers. British J Clin Pharmacol 2008; 65(3): 338–46

    Article  CAS  Google Scholar 

  153. Clark A, Nilsson MR. Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 2004; 47(2): 157–69

    Article  PubMed  CAS  Google Scholar 

  154. Fineman M, Weyer C, Maggs DG, et al. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm Metab Res 2002; 34(9): 504–8

    Article  PubMed  CAS  Google Scholar 

  155. Young A. Inhibition of gastric emptying. Adv Pharmacol 2005; 52: 99–121

    Article  PubMed  CAS  Google Scholar 

  156. Chapman I, Parker B, Doran S, et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 2005; 48(5): 838–48

    Article  PubMed  CAS  Google Scholar 

  157. Hull RL, Westermark GT, Westermark P, et al. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 2004; 89(8): 3629–43

    Article  PubMed  CAS  Google Scholar 

  158. Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 2004; 53 Suppl. 3: S233-8

    Google Scholar 

  159. Ryan GJ, Jobe LJ, Martin R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin Ther 2005; 27(10): 1500–12

    Article  PubMed  CAS  Google Scholar 

  160. Wysham C, Lush C, Zhang B, et al. Effect of pramlintide as an adjunct to basal insulin on markers of cardiovascular risk in patients with type 2 diabetes. Curr Med Res Opin 2008; 24(1): 79–85

    Article  PubMed  CAS  Google Scholar 

  161. Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004; 3(9): 771–84

    Article  PubMed  CAS  Google Scholar 

  162. Bramlage P, Muhlen I, Randeva H, et al. Cardiovascular risk management by blocking the endocannabinoid system. Exp Clin Endocrinol Diabetes 2006; 114(2): 75–81

    Article  PubMed  CAS  Google Scholar 

  163. Van Gaal LF, Rissanen AM, Scheen AJ, et al. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365(9468): 1389–97

    Article  PubMed  CAS  Google Scholar 

  164. NCEP. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486–97

    Article  Google Scholar 

  165. Pi-Sunyer FX, Aronne LJ, Heshmati HM, et al. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America, a randomized controlled trial. JAMA 2006; 295(7): 761–75

    Article  PubMed  CAS  Google Scholar 

  166. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353(20): 2121–34

    Article  PubMed  CAS  Google Scholar 

  167. Scheen AJ, Finer N, Hollander P, et al. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 2006; 368(9548): 1660–72

    Article  PubMed  CAS  Google Scholar 

  168. Simons-Morton DG, Obarzanek E, Cutler JA. Obesity research: limitations of methods, measurements, and medications. JAMA 2006; 295(7): 826–8

    Article  PubMed  CAS  Google Scholar 

  169. Van Gaal L, Pi-Sunyer X, Despres JP, et al. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care 2008; 31 Suppl. 2: S229-40

    Google Scholar 

  170. Christensen R, Kristensen PK, Bartels EM, et al. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007; 370(9600): 1706–13

    Article  PubMed  CAS  Google Scholar 

  171. Mitchell PB, Morris MJ. Depression and anxiety with rimonabant. Lancet 2007; 370(9600): 1671–2

    Article  PubMed  Google Scholar 

  172. European Medicines Agency. Press release: European Medicines Agency recommends Acomplia must not be used in patients on antidepressants or with major depression [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/acomplia/32982607en.pdf [Accessed 2008 Aug 6]

  173. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr Opin Cardiol 2006; 21(1): 1–6

    Article  PubMed  Google Scholar 

  174. ClinicalTrials.gov. Study evaluating rimonabant efficacy in insulin-treated diabetic patients (ARPEGGIO) [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00288236 [Accessed 2008 Jun 6]

  175. Nissen SE, Nicholls SJ, Wolski K, et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 2008 Apr 2; 299(13): 1547–60

    Article  PubMed  CAS  Google Scholar 

  176. Addy C, Wright H, Van Laere K, et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab 2008; 7(1): 68–78

    Article  PubMed  CAS  Google Scholar 

  177. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415–28

    Article  PubMed  CAS  Google Scholar 

  178. Grundy SM. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov 2006; 5(4): 295–309

    Article  PubMed  CAS  Google Scholar 

  179. Barish GD, Evans RM. PPARs and LXRs: atherosclerosis goes nuclear. Trends Endocrinol Metab 2004; 15(4): 158–65

    Article  PubMed  CAS  Google Scholar 

  180. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004; 10(4): 355–61

    Article  PubMed  CAS  Google Scholar 

  181. Ginsberg HN, Stalenhoef AF. The metabolic syndrome: targeting dyslipidaemia to reduce coronary risk. J Cardiovasc Risk 2003; 10(2): 121–8

    Article  PubMed  Google Scholar 

  182. Conlon D. Goodbye glitazars? Br J Diabetes Vasc Dis 2006; 6: 135–7

    Article  CAS  Google Scholar 

  183. Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 2005; 294(20): 2581–6

    Article  PubMed  CAS  Google Scholar 

  184. Cox SL. Tesaglitazar: a promising approach in type 2 diabetes. Drugs Today 2006; 42(3): 139–46

    Article  PubMed  CAS  Google Scholar 

  185. Charach G, Grosskopf I, Rotmensch HH, et al. Bezafibrates cause moderate, reversible impairment in renal function in patients without prior renal disease. Nephron Clin Pract 2005; 100(4): 120–5

    Article  CAS  Google Scholar 

  186. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365(9467): 1333–46

    Article  PubMed  CAS  Google Scholar 

  187. Miller JL, Silverstein JH. The treatment of type 2 diabetes mellitus in youth: which therapies? Treat Endocrinol 2006; 5(4): 201–10

    Article  PubMed  CAS  Google Scholar 

  188. Glass CK. Antiatherogenic effects of thiazolidinediones? Arterioscler Thromb Vasc Biol 2001; 21(3): 295–6

    Article  PubMed  CAS  Google Scholar 

  189. Lindberg M, Astrup A. The role of glitazones in management of type 2 diabetes: a dream or a nightmare? Obes Rev 2007; 8(5): 381–4

    Article  PubMed  CAS  Google Scholar 

  190. Krentz AJ, Bailey CJ, Melander A. Thiazolidinediones for type 2 diabetes: new agents reduce insulin resistance but need long term clinical trials. BMJ 2000; 321(7256): 252–3

    Article  PubMed  CAS  Google Scholar 

  191. Nissen SE. The US Food and Drug Administration: a dysfunctional agency in need of major reforms. Curr Cardiol Rep 2007; 9(3): 167–9

    Article  PubMed  Google Scholar 

  192. Rosen CJ. The rosiglitazone story: lessons from an FDA Advisory Committee meeting. N Engl J Med 2007; 357(9): 844–6

    Article  PubMed  CAS  Google Scholar 

  193. Scherbaum WA, Schweizer A, Mari A, et al. Evidence that vildagliptin attenuates deterioration of glycaemic control during 2-year treatment of patients with type 2 diabetes and mild hyperglycaemia. Diabetes Obes Metab. Epub 2008 Mar 18

  194. Todd JF, Bloom SR. Incretins and other peptides in the treatment of diabetes. Diabet Med 2007; 24(3): 223–32

    Article  PubMed  CAS  Google Scholar 

  195. Cummings DE. Gastric bypass and nesidioblastosis: too much of a good thing for islets? N Engl J Med 2005; 353(3): 300–2

    Article  PubMed  CAS  Google Scholar 

  196. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 2008; 299(3): 316–23

    Article  PubMed  CAS  Google Scholar 

  197. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007; 357(8): 753–61

    Article  PubMed  CAS  Google Scholar 

  198. Davis SN, Johns D, Maggs D, et al. Exploring the substitution of exenatide for insulin in patients with type 2 diabetes treated with insulin in combination with oral antidiabetes agents. Diabetes Care 2007; 30(11): 2767–72

    Article  PubMed  CAS  Google Scholar 

  199. Bretzel RG, Nuber U, Landgraf W, et al. Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial. Lancet 2008; 371(9618): 1073–84

    Article  PubMed  CAS  Google Scholar 

  200. Lebovitz HE. Therapeutic options in development for management of diabetes: pharmacologic agents and new technologies. Endocr Pract 2006; 12 Suppl. 1: 142–7

    PubMed  Google Scholar 

  201. Goldberg RB, Holman R, Drucker DJ. Clinical decisions: management of type 2 diabetes. N Engl J Med 2008; 358(3): 293–7

    Article  PubMed  CAS  Google Scholar 

  202. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000; 106(4): 453–8

    Article  PubMed  CAS  Google Scholar 

  203. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348: 383–93

    Article  PubMed  Google Scholar 

  204. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358: 580–91

    Article  PubMed  CAS  Google Scholar 

  205. Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. Epub 2008 Sep 10

  206. Home PD. Impact of the UKPDS: an overview. Diabet Med 2008; 25 (Suppl 2): 2–8

    Article  PubMed  Google Scholar 

  207. Gallwitz B. Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus. Treat Endocrinol 2005; 4(6): 361–70

    Article  PubMed  CAS  Google Scholar 

  208. Bose AK, Mocanu MM, Carr RD, et al. Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 2005; 19(1): 9–11

    Article  PubMed  Google Scholar 

  209. Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007; 370(9600): 1687–97

    Article  PubMed  CAS  Google Scholar 

  210. Krentz AJ, Clough G, Byrne CD. Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes Metab 2007; 9(6): 781–91

    Article  PubMed  CAS  Google Scholar 

  211. Lustman PJ, Penckofer SM, Clouse RE. Recent advances in understanding depression in adults with diabetes. Curr Diab Rep 2007; 7(2): 114–22

    Article  PubMed  Google Scholar 

  212. Gale EA. Lessons from the glitazones: a story of drug development. Lancet 2001; 357(9271): 1870–5

    Article  PubMed  CAS  Google Scholar 

  213. Hermansen K, Mortensen LS. Bodyweight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus. Drug Saf 2007; 30(12): 1127–42

    Article  PubMed  CAS  Google Scholar 

  214. Drucker DJ, Buse JB, Taylor K, et al, for the DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. Epub 2008 Sep 7

  215. Bottomley JM, Raymond FD. Pharmaco-economic issues for diabetes therapy. Best Pract Res 2007; 21(4): 657–85

    CAS  Google Scholar 

  216. Rungby J, Krentz AJ. Pharmacotherapy of diabetes. In: Mogensen CE, editor. Pharmacotherapy of diabetes: new developments. New York: Springer Publishing Company, 2007: 3–8

    Chapter  Google Scholar 

  217. Goldfine AB. Assessing the cardiovascular safety of diabetes therapies. N Engl J Med 2008 Sep 11; 359(11): 1092–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Drs Bailey and Krentz have received honoraria for ad hoc consulting work for GlaxoSmithKline, Takeda, Novartis, Eli Lily, Novo Nordisk, Sanofi Aventis and others. Dr Patel has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Krentz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krentz, A.J., Patel, M.B. & Bailey, C.J. New Drugs for Type 2 Diabetes Mellitus. Drugs 68, 2131–2162 (2008). https://doi.org/10.2165/00003495-200868150-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200868150-00005

Keywords

Navigation