Skip to main content
Log in

In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Exposure to ultrafine particles (UFPs) by inhalation increases the number and severity of cardiac events. The specific mechanism(s), of action are unknown. This study was designed to examine whether UFPs could exert a direct effect on the cardiovascular system without dependence upon lung-mediated responses. The direct effects of UFPs were determined in normal rats (infused intravenously with UFPs), and in the isolated Langendorff perfused rat heart. UFPs from either ambient air (UFAAs) or diesel engine exhaust (UFDGs) were studied. Infusion of UFDGs prepared in our laboratory caused ventricular premature beats (VPBs) in 2 of 3 rats in vivo. Ejection fraction in creased slightly (∼4.5%) in rats receiving UFPAA and was unchanged in the UFDG and saline groups in vivo. In the isolated rat heart, perfused according to Langendorff, UFDGs caused a marked ncrease in left-ventricular end-diastolic pressure (LVEDP; from 12.0±4.6 mmHg to 24.8±11.2 mmHg, p<0.05) after 30 min of exposure. UFPs isolated from industrial diesel particulate matter (UFIDs), obtained from the National Institute of Standards and Technology, caused a significant decrease in left-ventricular systolic pressure (LVSP; from 85.7±4.0 mmHg to 37.9±20.3 mmHg, p<0.05) and ±dp/dt (from 2365±158 mmHg/s to 1188±858 mmHg/s, p<0.05) at 30 min after the start of infusion. This effect was absent when the soluble fraction (containing no particles) isolated from the UFIDs was studied. These findings indicate that UFPs can have direct effects on the cardiovascular system that are independent of effects of particles on the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, R.W., Anderson H.R. Sunyer, J., et al. (2001). Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. Am. J. Respir. Crit Care Med. 164:1860–1866.

    PubMed  CAS  Google Scholar 

  2. Ebelt, S.T., Petkau, A.J., Vedal, S., Fisher, T.V., and Brauer, M. (2000). Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J. Air Waste Manag. Assoc. 50: 1081–1094.

    PubMed  CAS  Google Scholar 

  3. Gehring, U., Cyrys, J., Sedlmeir, G., et al. (2002). Trafficrelated air pollution and respiratory health during the first 2 yrs of life. Eur. Respir. J. 19:690–698.

    Article  PubMed  CAS  Google Scholar 

  4. Goldberg, M.S. (1996) Particulate air pollution and daily mortality: who is at risk? J. Aerosol. Med. 9: 43–53.

    PubMed  CAS  Google Scholar 

  5. Neas, L.M. (2000). Fine particulate matter and cardiovascular disease. Fuel. Process. Technol. 65:55–67.

    Article  Google Scholar 

  6. Nemmar, A., Hoet, P.H., and Nemery, B. (2003). Health effects of air pollution episodes. Rev. Mal. Respir., 20:327–330.

    PubMed  CAS  Google Scholar 

  7. Pekkanen, J., Timonen, K.L., Ruuskanen, J., Reponen, A., and Mirme, A. (1997). Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ. Res. 74:24–33.

    Article  PubMed  CAS  Google Scholar 

  8. Penttinen, P., Timonen, K.L., Tiittanen P., Mirme A., Ruuskanen, J., and Pekkanen, J. (2001) Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Respir. J. 17:428–435.

    Article  PubMed  CAS  Google Scholar 

  9. Peters, A. and Wichmann, H.E. (2002). Health effects of fine and ultrafine particles: the Erfurt studies. Epidemiology 13:S125-S125.

    Google Scholar 

  10. Pope, C.A., 3rd. (1996). Adverse health effects of air pollutants in a nonsmoking population. Toxicology 111:149–155.

    Article  PubMed  CAS  Google Scholar 

  11. Schwartz, J., Slater, D., Larson, T.V., Pierson, W.E., and Koenig, J.Q. (1993) Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am. Rev. Respir. Dis. 147:826–831.

    PubMed  CAS  Google Scholar 

  12. Wong, T.W., Lau, T.S., Yu, T.S., et al. (1999). Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occup. Environ. Med. 56:679–683.

    Article  PubMed  CAS  Google Scholar 

  13. Oberdorster, G., Gelein, R.M., Ferin, J., and Weiss, B. (1995). Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal. Toxicol. 7:111–124.

    PubMed  CAS  Google Scholar 

  14. Grahame, T.J. and Schlesinger, R.B. (2005). Evaluating the health risk from secondary sulfates in eastern North American regional ambient air particulate matter. Inhal. Toxicol. 17, 15–27.

    Article  PubMed  CAS  Google Scholar 

  15. Englert, N. (2004). Fine particles and human health—a review of epidemiological studies. Toxicology Lett 149: 235–242.

    Article  CAS  Google Scholar 

  16. Peters, A. and Wichmann, H.E. (2001). Epidemiological evidence on the health effects of ultrafine particles. Epidemiology 12: S97-S97.

    Google Scholar 

  17. Wichmann, H.E. and Peters, A. (2000). Epidemiological evidence of the effects of ultrafine particle exposure. Philos. Transact. A Math. Phys. Eng. Sci. 358:2751–2768.

    Article  CAS  Google Scholar 

  18. Frampton, M.W. (2001). Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ. Health Perspect. 4:529–532.

    Google Scholar 

  19. Peters, A., Wichmann, H.E., Tuch, T., Heinrich, J., and Heyder J. (1997). Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care. Med. 155:1376–1383.

    PubMed  CAS  Google Scholar 

  20. de Hartog, J.J., Hoek, G., Peters, A. et al. (2003). Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. Am. J. Epidemiol. 157:613–623.

    Article  PubMed  Google Scholar 

  21. Ibald-Mulli, A., Timonen, K.L., Peters, A., et al. (2004). Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ. Health Perspect. 112:369–377.

    Article  PubMed  Google Scholar 

  22. Frampton, M.W., Utell, M.J., Zareba, W., et al. (2004). Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res. Rep. Health Eff. Inst. 126:1–47.

    PubMed  Google Scholar 

  23. Macnee, W., and Donaldson, K. (2003). Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur. Respir. J. Suppl. 40:47S-51S.

    Article  PubMed  CAS  Google Scholar 

  24. Moller, W., Hofer, T., Ziesenis, A., Karg, E., and Heyder, J. (2002) Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol. Appl. Pharmacol. 182. 197–207.

    Article  PubMed  CAS  Google Scholar 

  25. Shukla, A., Timblin, C., BeruBe, K., et al. (2000). Inhaled particulate matter causes expression of nuclear factor(NF)-kappaB-related genes and oxidat-dependent NF-kappaB activation in vitro. Am. J. Respir. Cell. Mol. Biol. 23:182–187.

    PubMed  CAS  Google Scholar 

  26. Stone, V., Tuinman, M., Vamvakopoulos, J.E., et al. (2000). Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur. Respir. J. 15:297–303.

    Article  PubMed  CAS  Google Scholar 

  27. Schulz, H., Harder, V., Ibald-Mulli, A., et al. (2005). Cardiovascular effects of fine and ultrafine particles. J. Aerosol. Med. 18(1):1–22.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, Y. M., Reed, W., Lenz, A.G., et al. (2005). Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. Am. J. Physiol. Lung. Cell. Mol. Physiol. 288: L432-L441.

    Article  PubMed  CAS  Google Scholar 

  29. Pinkerton, K.E., Zhou, Y.M., Teague, S.V., et al. (2004). Reduced lung cell proliferation following short-term exposure to ultrafine soot and iron particles in neonatal rats: Key to impaired lung growth? Inhal. Toxicol. 16: 73–81.

    Article  PubMed  CAS  Google Scholar 

  30. Donaldson, K., Stone, V., Seaton, A., and MacNee, W. (2001). Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ. Health Perspect. 4:523–527.

    Google Scholar 

  31. Fine, P.M., Shen, S., and Sioutas, C. (2004). Inferring the sources of fine and ultrafine particulate matter at downwind receptor sites in the Los Angeles basin using multiple continuous measurements. Aerosol Sci. Technol. 38: 182–195.

    Article  CAS  Google Scholar 

  32. Chang, M.C.O., Chow, J.C., Watson, J.G., Hopke, P.K., Yi, S.M., and England, G.C. (2004). Measurement of ultrafine particle size distributions from coal-, oil-, and gasfired stationary combustion sources. J. Air. Waste Manag. Assoc. 54:1494–1505.

    PubMed  CAS  Google Scholar 

  33. Lighty, J.S., Veranth, J.M., and Sarofim A.F. (2000). Combustion aerosols: factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 50:1565–1618.

    PubMed  CAS  Google Scholar 

  34. Cyrys, J., Stolzel, M., Heinrich, J., et al. (2003). Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci. Total Environ. 305:143–156.

    Article  PubMed  CAS  Google Scholar 

  35. Holmen, B.A. and Ayala, A. (2002). Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses. Environ. Sci. Technol. 36:5041–5050.

    Article  PubMed  CAS  Google Scholar 

  36. Zhu, Y., Hinds, W.C., Kim, S., and Sioutas, C. (2002). Concentration and size distribution of ultrafine particles near a major highway. J. Air Waste Manag. Assoc. 52: 1032–1042.

    PubMed  Google Scholar 

  37. Wiedensohler, A., Wehner, B., Birmili, W. (2002). Aerosol number concentrations and size distributions at mountain-rural, ruban-influenced rural, and urban-background sites in Germany. J. Aerosol. Med. 15:237–243.

    Article  PubMed  CAS  Google Scholar 

  38. Sardar, S.B., Fine, P.M., Yoon, H., and Sioutas, C. (2004). Associations between particle number and gaseous co-pollutant concentrations in the Los Angeles basin. J. Air Waste Manag. Assoc. 54:992–1005.

    PubMed  CAS  Google Scholar 

  39. Cyrys, J., Pitz, M., Bischof, W., Wichmann, H.E., and Heinrich, J. (2004). Relationship between indoor and out-door levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J. Exp. Anal. Environ. Epidemiol. 14:275–283.

    Article  CAS  Google Scholar 

  40. Zhu, Y.F., Hinds, W.C., Kim S., Shen, S., and Sioutas, C. (2002). Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. Environ. 36:4323–4335.

    Article  CAS  Google Scholar 

  41. Donaldson, K., and MacNee, W. (2001). Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int. J. Hyg. Environ. Health 203:411–415.

    Article  PubMed  CAS  Google Scholar 

  42. Beck-Speier, I., Dayal, N., Karg, E. et al. (2005). Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic. Biol. Med. 38:1080–1092.

    Article  PubMed  CAS  Google Scholar 

  43. Brown, D.M., Wilson, M.R., MacNee, W., Stone, V., and Donaldson, K. (2001). Size-dependent proinllammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative struess in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175:191–199.

    Article  PubMed  CAS  Google Scholar 

  44. Dick, C.A., Brown, D.M., Donaldson, K., and Stone, V. (2003). The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal. Toxicol. 15:39–52.

    Article  PubMed  CAS  Google Scholar 

  45. Li, N., Sioutas, C., Cho, A., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111:455–460.

    Article  PubMed  CAS  Google Scholar 

  46. Wilson, M.R., Lightbody, J.H., Donaldson, K., Sales J., and Stone, V. (2002). Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol. 184:172–179.

    Article  PubMed  CAS  Google Scholar 

  47. MacNee, W., and Donaldson, K. (2000). How can ultrafine particlee be responsible for increased mortality? Monaldi Arch. Chest Dis. 55:135–139

    PubMed  CAS  Google Scholar 

  48. Oberdorster, G., Sharp, Z., Atudorei, V., et al. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health 65: 1531–1543.

    Article  CAS  Google Scholar 

  49. Nemmar, A., Hoet, P.H., Vanquickenborne, B., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414.

    Article  PubMed  CAS  Google Scholar 

  50. Nemmar, A., Vanbilloen, H., Hoylaerts, M.F., Hoet, P.H.M., Verbruggen, A., and Nemery, B. (2001). Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am. J. Respir. Crit. Care Med. 164:1665–1668.

    PubMed  CAS  Google Scholar 

  51. National Society of Medical Research. (1967). Principles of Laboratory Animal Care, revised (1980) as Guiding Principles in the Care and Use of Animals. Physiologist 23:38.

    Google Scholar 

  52. Institute of Laboratory Animal Resources National Research Council. (1996). Guide for the care and use of laboratory animals. National Academy Press, Washington, DC.

    Google Scholar 

  53. Kim S., Jaques, P.A., Chang, M.C., et al. (2001). Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles-Part II: field evaluation. J. Aerosol Sci 32:1299–1314.

    Article  CAS  Google Scholar 

  54. Kim, S., Jaques, P.A., Chang, M.C., Froines, J.R., and Sioutas, C. (2001). Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles-Part I: Development and laboratory characterization. J. Aerosol Sci. 32:1281–1297.

    Article  CAS  Google Scholar 

  55. Kleinman, M.T., Hamade, A., Meacher, D., et al., (2005). Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. J. Air Waste Manag. Assoc. 55: 1277–1288.

    PubMed  CAS  Google Scholar 

  56. Dai, W., Hale, S.L., Martin, B.J., et al., (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short-and long-term effects. Circulation 112: 214–223.

    Article  PubMed  Google Scholar 

  57. Peters, A., Liu, E., Verrier, R.L., et al., (2000). Air pollution and incidence of cardiac arrhythmia. Epidemiology 11:11–17.

    Article  PubMed  CAS  Google Scholar 

  58. Gold, D.R., Litonjua, A., Schwartz, J., et al. (2000). Ambient pollution and heart rate variability. Circulation 101:1267–1273.

    PubMed  CAS  Google Scholar 

  59. Prescott, G.J., Lee, R.J., Cohen, G. R., et al. (2000). Investigation of factors which might indicate susceptibility to particulate air pollution. Occup. Environ. Med. 57: 53–57.

    Article  PubMed  CAS  Google Scholar 

  60. Seaton, A. Soutar, A., Crawford, V., et al. (1999). Particulate air pollution and the blood. Thorax 54:1027–1032.

    Article  PubMed  CAS  Google Scholar 

  61. Peters, A., Doring, A., Wichmann, H.E., and Koenig, W., (1997). Increased plasma viscosity during an air pollution episode: A link to mortality? Lancet 349:1582–1587.

    Article  PubMed  CAS  Google Scholar 

  62. Routledge, H.C., Ayres, J.G., and Townend, J.N. (2003). Why cardiologists should be interested in air pollution. Heart 89:1383–1388.

    Article  PubMed  CAS  Google Scholar 

  63. Watkinson, W.P., Campen, M.J., and Costa, D.L. (1998). Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicol. Sci. 41:209–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Kloner MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wold, L.E., Simkhovich, B.Z., Kleinman, M.T. et al. In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc Toxicol 6, 69–78 (2006). https://doi.org/10.1385/CT:6:1:69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:6:1:69

Index Entries

Navigation