Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes

A Corrigendum to this article was published on 13 November 2008

Abstract

The role of UVA-radiation—the major fraction in sunlight—in human skin carcinogenesis is still elusive. We here report that different UVA exposure regime (4 × 5 J/cm2 per week or 1 × 20 J/cm2 per week) caused tumorigenic conversion (tumors in nude mice) of the HaCaT skin keratinocytes. While tumorigenicity was not associated with general telomere shortening, we found new chromosomal changes characteristic for each recultivated tumor. Since this suggested a nontelomere-dependent relationship between UVA irradiation and chromosomal aberrations, we investigated for alternate mechanisms of UVA-dependent genomic instability. Using the alkaline and neutral comet assay as well as γ-H2AX foci formation on irradiated HaCaT cells (20–60 J/cm2), we show a dose-dependent and long lasting induction of DNA single and double (ds) strand breaks. Extending this to normal human skin keratinocytes, we demonstrate a comparable damage response and, additionally, a significant induction and maintenance of micronuclei (MN) with more acentric fragments (indicative of ds breaks) than entire chromosomes particularly 5 days post irradiation. Thus, physiologically relevant UVA doses cause long-lasting DNA strand breaks, a prerequisite for chromosomal aberration that most likely contribute to tumorigenic conversion of the HaCaT cells. Since normal keratinocytes responded similarly, UVA may likewise contribute to the complex karyotype characteristic for human skin carcinomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Armitage P . (1955). Test for linear trends in proportions and frequencies. Biometrics 11: 375–386.

    Article  Google Scholar 

  • Armstrong BK, Kricker A . (2001). The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63: 8–18.

    Article  CAS  Google Scholar 

  • Bleuel K, Popp S, Fusenig NE, Stanbridge EJ, Boukamp P . (1999). Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA 96: 2065–2070.

    Article  CAS  Google Scholar 

  • Boukamp P . (2005b). UV-induced skin cancer: similarities—variations. J Dtsch Dermatol Ges 3: 493–503.

    Article  Google Scholar 

  • Boukamp P, Breitkreutz D, Stark HJ, Fusenig NE . (1990a). Mesenchyme-mediated and endogenous regulation of growth and differentiation of human skin keratinocytes derived from different body sites. Differentiation 44: 150–161.

    Article  CAS  Google Scholar 

  • Boukamp P, Peter W, Pascheberg U, Altmeier S, Fasching C, Stanbridge EJ et al. (1995). Step-wise progression in human skin carcinogenesis in vitro involves mutational inactivation of p53, rasH oncogene activation and additional chromosome loss. Oncogene 11: 961–969.

    CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.

    Article  CAS  Google Scholar 

  • Boukamp P, Popp S, Altmeyer S, Hulsen A, Fasching C, Cremer T et al. (1997). Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes Chromosomes Cancer 19: 201–214.

    Article  CAS  Google Scholar 

  • Boukamp P, Popp S, Bleuel K, Tomakidi E, Burkle A, Fusenig NE . (1999). Tumorigenic conversion of immortal human skin keratinocytes (HaCaT) by elevated temperature. Oncogene 18: 5638–5645.

    Article  CAS  Google Scholar 

  • Boukamp P, Stanbridge EJ, Foo DY, Cerutti PA, Fusenig NE . (1990b). c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50: 2840–2847.

    CAS  PubMed  Google Scholar 

  • Burnworth B, Popp S, Stark HJ, Steinkraus V, Brocker EB, Hartschuh W et al. (2006). Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation. Oncogene 25: 4399–4412.

    Article  CAS  Google Scholar 

  • Cadet J, Sage E, Douki T . (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571: 3–17.

    Article  CAS  Google Scholar 

  • Cochran WG . (1954). Some methods for strengthening the common chi square test. Biometrics 11: 417–451.

    Article  Google Scholar 

  • Cohen J . (1960). A coefficient of agreement for nominal scales. Educ Psychol Meas 20: 37–46.

    Article  Google Scholar 

  • de Gruijl FR . (2002). Photocarcinogenesis: UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol 15: 316–320.

    Article  CAS  Google Scholar 

  • Emri G, Wenczl E, Van EP, Jans J, Roza L, Horkay I et al. (2000). Low doses of UVB or UVA induce chromosomal aberrations in cultured human skin cells. J Invest Dermatol 115: 435–440.

    Article  CAS  Google Scholar 

  • Federal Office for Radiation Protection (2006). Continuous Solar UV-Monitoring in Germany. Federal Office for Radiation Protection: Munich, Germany, www.bfs.de.

  • Fenech M . (2000). The in vitro micronucleus technique. Mutat Res 455: 81–95.

    Article  CAS  Google Scholar 

  • Fenech M . (2002). Biomarkers of genetic damage for cancer epidemiology. Toxicology 181–182: 411–416.

    Article  Google Scholar 

  • Figueroa R, Lindenmaier H, Hergenhahn M, Nielsen KV, Boukamp P . (2000). Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors. Cancer Res 60: 2770–2774.

    CAS  PubMed  Google Scholar 

  • Folkman J, Hanahan D . (1991). Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22: 339–347.

    CAS  PubMed  Google Scholar 

  • Garinis GA, Mitchell JR, Moorhouse MJ, Hanada K, de Waard H, Vandeputte D et al. (2005). Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J 24: 3952–3962.

    Article  CAS  Google Scholar 

  • He YY, Pi J, Huang JL, Diwan BA, Waalkes MP, Chignell CF . (2006). Chronic UVA irradiation of human HaCaT keratinocytes induces malignant transformation associated with acquired apoptotic resistance. Oncogene 25: 3680–3688.

    Article  CAS  Google Scholar 

  • Ikehata H, Kudo H, Masuda T, Ono T . (2003). UVA induces C → T transitions at methyl-CpG-associated dipyrimidine sites in mouse skin epidermis more frequently than UVB. Mutagenesis 18: 511–519.

    Article  CAS  Google Scholar 

  • Ikehata H, Nakamura S, Asamura T, Ono T . (2004). Mutation spectrum in sunlight-exposed mouse skin epidermis: small but appreciable contribution of oxidative stress-mediated mutagenesis. Mutat Res 556: 11–24.

    Article  CAS  Google Scholar 

  • Ikehata H, Ono T . (2007). Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin. Photochem Photobiol 83: 196–204.

    CAS  PubMed  Google Scholar 

  • Kielbassa C, Roza L, Epe B . (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18: 811–816.

    Article  CAS  Google Scholar 

  • Krude T . (1999). Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res 247: 148–159.

    Article  CAS  Google Scholar 

  • Lehman TA, Modali R, Boukamp P, Stanek J, Bennett WP, Welsh JA et al. (1993). p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14: 833–839.

    Article  CAS  Google Scholar 

  • Limoli CK, Giedzinski E, Bonner WM, Cleaver JE . (2002). UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ-H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci USA 99: 233–238.

    Article  CAS  Google Scholar 

  • Marti TM, Hefner E, Feeney L, Natale V, Cleaver JE . (2006). H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci USA 103: 9891–9896.

    Article  CAS  Google Scholar 

  • Murnane JP, Sabatier L . (2004). Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 26: 1164–1174.

    Article  CAS  Google Scholar 

  • Mutzhas MF, Holzle E, Hofmann C, Plewig G . (1981). A new apparatus with high radiation energy between 320–460 nm: physical description and dermatological applications. J Invest Dermatol 76: 42–47.

    Article  CAS  Google Scholar 

  • Obermueller E, Vosseler S, Fusenig NE, Mueller MM . (2004). Cooperative autocrine and paracrine functions of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the progression of skin carcinoma cells. Cancer Res 64: 7801–7812.

    Article  CAS  Google Scholar 

  • Oikawa S, Kawanishi S . (1999). Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 453: 365–368.

    Article  CAS  Google Scholar 

  • Olive PL . (1999). DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 75: 395–405.

    Article  CAS  Google Scholar 

  • Olive PL, Frazer G, Banath JP . (1993). Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat Res 136: 130–136.

    Article  CAS  Google Scholar 

  • Parangi S, O’Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J et al. (1996). Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 93: 2002–2007.

    Article  CAS  Google Scholar 

  • Phillipson RP, Tobi SE, Morris JA, McMillan TJ . (2002). UV-A induces persistent genomic instability in human keratinocytes through an oxidative stress mechanism. Free Radic Biol Med 32: 474–480.

    Article  CAS  Google Scholar 

  • Popp S, Waltering S, Herbst C, Moll I, Boukamp P . (2002). UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int J Cancer 99: 352–360.

    Article  CAS  Google Scholar 

  • Popp S, Waltering S, Holtgreve-Grez H, Jauch A, Proby C, Leigh IM et al. (2000). Genetic characterization of a human skin carcinoma progression model: from primary tumor to metastasis. J Invest Dermatol 115: 1095–1103.

    Article  CAS  Google Scholar 

  • Rapp A, Bock C, Dittmar H, Greulich KO . (2000). UV-A breakage sensitivity of human chromosomes as measured by COMET-FISH depends on gene density and not on the chromosome size. J Photochem Photobiol B 56: 109–117.

    Article  CAS  Google Scholar 

  • Rapp A, Greulich KO . (2004). After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 117: 4935–4945.

    Article  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  Google Scholar 

  • Rothkamm K, Lobrich M . (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100: 5057–5062.

    Article  CAS  Google Scholar 

  • Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM . (2002). Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 158: 486–492.

    Article  CAS  Google Scholar 

  • Skobe M, Fusenig NE . (1998). Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 95: 1050–1055.

    Article  CAS  Google Scholar 

  • Tefferi A, Dewald GW, Litzow ML, Cortes J, Mauro MJ, Talpaz M et al. (2005). Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment. Mayo Clin Proc 80: 390–402.

    Article  CAS  Google Scholar 

  • Thompson LH, Limoli CL . (2003). Origin, recognition, signaling and repair of DNA double-strand breaks in mammalian cells (Chapter 6). In: Caldecott KW (ed). Eukaryotic DNA Damage Surveillance and Repair. Kluwer Academic/Plenum Press, pp 107–145.

    Google Scholar 

  • von Zglinicki T, Pilger R, Sitte N . (2000). Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28: 64–74.

    Article  CAS  Google Scholar 

  • Wischermann K, Boukamp P, Schmezer P . (2007). Improved alkaline comet assay protocol for adherent HaCaT keratinocytes to study UVA-induced DNA Damage. Mutat Res 630: 122–128.

    Article  CAS  Google Scholar 

  • Wondrak GT, Jacobson MK, Jacobson EL . (2006). Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5: 215–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cees Guikers for the first experiments with daily exposures, Heinrich Steinbauer for performing the tumor experiments, Heidi Holtgreve for her excellent technical assistance in M-FISH hybridization and Stefan Henning for comparing the different UVA-sources. This work was supported in part from the Sander Stiftung, Deutsche Krebshilfe e.V. and EU (LSHC-CT-2004-502943) (both to PB), QLK4-1999-01084 (to PB and KSK) as well as the German Research Foundation (SCHA 411/10-1,-2) and the European Community Marie Curie Program MEIF-CT-2005-023821 (to AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Boukamp.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wischermann, K., Popp, S., Moshir, S. et al. UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes. Oncogene 27, 4269–4280 (2008). https://doi.org/10.1038/onc.2008.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.70

Keywords

This article is cited by

Search

Quick links