Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breast cancer therapy-associated cardiovascular disease

Key Points

  • Breast cancer treatment-related cardiovascular disease is an established effect, although its absolute incidence is low, and these risks must be balanced with the potential for cure

  • Receiving radiation therapy is a known risk factor for developing cardiovascular disease

  • The latency period to radiation-induced cardiovascular disease was once thought to be decades, but newer evidence suggests that it can manifest within several years after treatment

  • The specific portion of the heart and the actual dose it receives are paramount to the development of radiation-induced cardiovascular disease; various technical modifications can limit cardiac exposure to radiation

  • Numerous systemic therapies for breast cancer, such as anthracyclines and trastuzumab, are known to be cardiotoxic

  • Routinely used cardiovascular medications might be effective in the prevention of chemotherapy-related cardiac injury, and their use should be considered

Abstract

Breast cancer treatments have evolved over the past decades, although several widely used treatments have adverse cardiac effects. Radiotherapy generally improves the survival of women with breast cancer, although its deleterious cardiovascular effects pose competing risks of morbidity and/or mortality. In the past, radiation-associated cardiovascular disease was a phenomenon considered to take more than a decade to manifest, but newer research suggests that this latency is much shorter. Knowledge of coronary anatomy relative to the distribution of the delivered radiation dose has improved over time, and as a result, techniques have enabled this risk to be decreased. Studies continue to be performed to better understand, prevent and mitigate against radiation-associated cardiovascular disease. Treatments such as anthracyclines, which are a mainstay of chemotherapy for breast cancer, and newer targeted agents such as trastuzumab both have established risks of cardiotoxicity, which can limit their effectiveness and result in increased morbidity and/or mortality. Interest in whether β-blockers, statins and/or angiotensin-converting enzyme (ACE)-inhibitors might have therapeutic and/or preventative effects in these patients is currently increasing. This Review summarizes the incidence, risks and effects of treatment-induced cardiovascular disease in patients with breast cancer and describes strategies that might be used to minimize this risk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical interaction between two mechanisms of radiation therapy-associated heart disease.
Figure 2: Variations between planned and delivered doses of radiation.
Figure 3: Adverse cardiac effects of radiation therapy in patients with breast cancer.
Figure 4: Effects of delaying cardioprotective medications after anthracycline administration.
Figure 5: Proposed algorithm for the management of cardiotoxicity in patients receiving anthracyclines.
Figure 6: Strategies to reduce incidental cardiac exposure to radiation in patients with left-sided breast cancer.
Figure 7: Algorithm used to select methods to minimize cardiac exposure during radiation therapy in patients with left-sided breast tumours.

Similar content being viewed by others

References

  1. Lee, M. S., Finch, W. & Mahmud, E. Cardiovascular complications of radiotherapy. Am. J. Cardiol. 112, 1688–1696 (2013).

    Article  PubMed  Google Scholar 

  2. Darby S. C. et al. Radiation-related heart disease: current knowledge and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 76, 656–665 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cuzick, J. et al. Overview of randomized trials of postoperative adjuvant radiation therapy in breast cancer. Cancer Treat. Rep. 71, 15–29 (1987).

    CAS  PubMed  Google Scholar 

  4. Cuzick, J. et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J. Clin. Oncol. 12, 447–453 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Host, H., Brennhovd, I. O. & Loeb, M. Postoperative radiotherapy in breast cancer—long-term results from the Oslo study. Int. J. Radiat. Oncol. Biol. Phys. 12, 727–732 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Haybittle, J. L., Brinkley, D., Houghton, J., A'Hern, R. P. & Baum, M. Postoperative radiotherapy and late mortality: evidence from the Cancer Research Campaign trial for early breast cancer. BMJ 298, 1611–1614 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutqvist, L. E., Lax, I., Fornander, T., A'Hern, R. P. & Baum, M. Cardiovascular mortality in a randomized trial of adjuvant radiation therapy versus surgery alone in primary breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 22, 887–896 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Rutqvist, L. E. & Johansson, H. Mortality by laterality of the primary tumor among 55,000 breast cancer patients from the Swedish Cancer Registry. Br. J. Cancer 61, 866–868 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hojris, I., Overgaard, M., Christensen, J. J. & Overgaard, J. Morbidity and mortality of ischemic heart disease in high-risk breast cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: Analysis of DBCG 82b and 82c randomized trials. Lancet 354, 1425–1430 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, E. E. et al. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast conservation treatment. J. Clin. Oncol. 24, 4100–4106 (2006).

    Article  PubMed  Google Scholar 

  11. Paszat, L. F. et al. A population-based case-cohort study of the risk of myocardial infarction following radiation therapy for breast cancer. Radiother. Oncol. 82, 294–300 (2007).

    Article  PubMed  Google Scholar 

  12. Correa, C. R. et al. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J. Clin. Oncol. 25, 3031–3037 (2007).

    Article  PubMed  Google Scholar 

  13. Hooning, M. J. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J. Natl Cancer Inst. 99, 365–375 (2007).

    Article  PubMed  Google Scholar 

  14. Borger, J. H. et al. Cardiotoxic effects of tangential breast irradiation in early breast cancer patients: the role of irradiated heart volume. Int. J. Radiat. Oncol. Biol. Phys. 69, 1131–1138 (2007).

    Article  PubMed  Google Scholar 

  15. Cvancarova, M. et al. Risk of death from cardiovascular disease in long-term breast cancer survivors: a comparison with women from the general population [abstract]. J. Clin. Oncol. 32, S5 a1534 (2014).

    Article  Google Scholar 

  16. Clarke, M. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366, 2087–2106 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Janjan, N. A. et al. Dose to the cardiac vascular and conduction systems in primary breast irradiation. Med. Dosim. 14, 81–87 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Nieder, C., Schill, S., Kneschaurek, P. & Molls, M. Influence of different treatment techniques on radiation dose to the LAD coronary artery. Radiat. Oncol. 2, 20 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taylor, C. W., Nisbet, A., McGale, P. & Darby, S. C. Cardiac exposures in breast cancer radiotherapy: 1950's–1990's. Int. J. Radiat. Oncol. Biol. Phys. 69, 1484–1495 (2007).

    Article  PubMed  Google Scholar 

  20. Taylor, C. W. et al. Cardiac dose from contemporary tangential breast cancer radiotherapy in the year 2006. Int. J. Radiat. Oncol. Biol. Phys. 72, 501–507 (2008).

    Article  PubMed  Google Scholar 

  21. Nilsson, G. et al. Distribution of coronary artery stenosis after radiation for breast cancer. J. Clin. Oncol. 30, 380–386 (2012).

    Article  PubMed  Google Scholar 

  22. Darby, S. C. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 368, 987–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Marks, L. B. et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int. J. Radiat. Oncol. Biol. Phys. 63, 214–223 (2005).

    Article  PubMed  Google Scholar 

  24. Bell, L. . J. Cox, J., Eade, T. & Rinks, M. & Kneebone, A. The impact of rectal and bladder variability on target coverage during post-prostatectomy intensity modulated radiotherapy. Radiother. Oncol. 110, 245–250 (2014).

    Article  PubMed  Google Scholar 

  25. de Crevoisier, R. et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int. J. Radiat. Biol. Oncol. Phys. 62, 965–973 (2005).

    Article  Google Scholar 

  26. Heemsbergen, W. D. et al. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68Gy versus 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 67, 1418–1424 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Michalski, J. M. et al. Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. Int. J. Radiat. Oncol. Biol. Phys. 46, 391–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Gyenes, G., Fornander, T., Carlens, P., Glas, U. & Rutqvist, L. E. Myocardial damage in breast cancer patients treated with adjuvant radiotherapy: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 36, 899–905 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Prosnitz, R. G. et al. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer 110, 1840–1850 (2007).

    Article  PubMed  Google Scholar 

  30. Ishii, J. et al. Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am. J. Cardiol. 89, 691–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Perna, E. R. et al. Ongoing myocardial injury in stable severe heart failure: value of cardiac troponin T monitoring for high-risk patient identification. Circulation 110, 2376–2382 (2004).

    Article  PubMed  Google Scholar 

  32. Nellessen, U. et al. Serial analysis of troponin I levels in patients with ischemic and nonischemic dilated cardiomyopathy. Clin. Cardiol. 29, 219–224 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nellessen, U., Zingel, M., Hecker, H., Bahnsen, J. & Borschke, D. Effects of radiation therapy on myocardial cell integrity and pump function: which role for cardiac biomarkers? Chemotherapy 56, 147–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hughes-Davies, L., Sacks, D., Rescigno, J., Howard, S. & Harris, J. Serum cardiac troponin T levels during treatment of early-stage breast cancer. J. Clin. Oncol. 13, 2582–2584 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Kozak, K. R. et al. Cardiac blood biomarkers in patients receiving thoracic (chemo)radiation. Lung Cancer 62, 351–355 (2008).

    Article  PubMed  Google Scholar 

  36. Cardinale, D., Salvatici, M. & Sandri, M. T. Role of biomarkers in cardioncology. Clin. Chem. Lab. Med. 49, 1937–1948 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Christenson, E. S., James, T., Agrawal, V. & Park, B. H. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin. Biochem. 48, 223–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hancock, S. L., Tucker, M. A. & Hoppe, R. T. Factors affecting late mortality from heart disease after treatment of Hodgkin's disease. J. Am. Med. Assoc. 270, 1949–1955 (1993).

    Article  CAS  Google Scholar 

  39. Bradley, J. D. et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16, 187–199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hardy, D., Liu, C. C., Cormier, J. N., Xia, R. & Du, X. L. Cardiac toxicity in association with chemotherapy and radiation therapy in a large cohort of older patients with non-small-cell lung cancer. Ann. Oncol. 21, 1825–1833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Grundy, S. M., Pasternak, R., Greenland, P., Smith, S. Jr & Fuster, V. AHA/ACC scientific statement: Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. J. Am. Coll. Cardiol. 34, 1348–1359 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Ridker, P. M., Buring, J. E., Rifai, N. & Cook, N. R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The Reynolds score. J. Am. Med. Assoc. 297, 611–619 (2007).

    Article  CAS  Google Scholar 

  44. Paszat, L. F., Mackillop, W. J., Groome, P. A., Schulze, K. & Holowaty, E. Mortality from myocardial infarction following postlumpectomy radiotherapy for breast cancer: A population-based study in Ontario, Canada. Int. J. Radiat. Oncol. Biol. Phys. 43, 755–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hooning, M. J. et al. Cause-specific mortality in long-term survivors of breast cancer: A 25-year follow-up study. Int. J. Radiat. Oncol. Biol. Phys. 64, 1081–1091 (2007).

    Article  Google Scholar 

  46. Brenner, D. J., Shuryak, I., Jozsef, G., Dewyngaert, K. J. & Formenti, S. C. Risk and risk reduction of major coronary events associated with contemporary breast radiotherapy. JAMA Intern. Med. 174, 158–160 (2014).

    Article  PubMed  Google Scholar 

  47. Suter, T. M. & Ewer, M. S. Cancer drugs and the heart: importance and management. Eur. Heart J. 34, 1102–1111 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lenihan D. J. & Cardinale, D. Late cardiac effects of cancer treatment. J. Clin. Oncol. 30, 3657–3664 (2012).

    Article  PubMed  Google Scholar 

  49. Jessup, M. et al. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 53, 1343–1382 (2009).

    Article  Google Scholar 

  50. Hahn, V. S., Lenihan, D. J. & Ky, B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J. Am. Heart Assoc. 3, e000665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Yeh, E. T. & Bickford, C. L. Cardiovascular complications of cancer therapy. Incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol. 53, 2231–2247 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Jones, L. W., Haykowsky, M. J., Swartz, J. J., Douglas, P. S. & Mackey, J. R. Early breast cancer therapy and cardiovascular injury. J. Am. Coll. Cardiol. 50, 1435–1441 (2007).

    Article  PubMed  Google Scholar 

  54. Von Hoff, D. D. et al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91, 710–717 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Bowles, E. J. et al. Pharmacovigilance Study Team. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J. Natl Cancer Inst. 104, 1293–1305, (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carver, J. R., Szalda, D. & Ky, B. Asymptomatic cardiac toxicity in long-term cancer survivors: defining the population and recommendations for surveillance. Semin. Oncol. 40, 229–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8, 459–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development Nature 378, 394–398 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Harbeck, N., Ewer, M. S., De Laurentiis, M., Suter, T. M. & Ewer, S. M. Cardiovascular complications of conventional and targeted adjuvant breast cancer therapy. Ann. Oncol. 22, 1250–1258 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Ewer, S. M. & Ewer, M. S. Carditoxicity profile of trastuzumab. Drug Saf. 31, 459–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Halyard, M. Y. et al. Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG phase III trial N9831. J. Clin. Oncol. 27, 2638–2644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shapiro, C. L. et al. Cardiac effects of adjuvant doxorubicin and radiation therapy in breast cancer patients. J. Clin. Oncol. 16, 3493–3501 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Valagussa, P. et al. Cardiac effects following adjuvant chemotherapy and breast irradiation in operable breast cancer. Ann. Oncol. 5, 209–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Cardinale, D., Bacchiani, G., Beggiato, M., Colombo, A. & Cipolla. C. M. Strategies to prevent and treat cardiovascular risk in cancer patients. Semin. Oncol. 40, 186–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Thavendiranathan, P. et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J. Am. Coll. Cardiol. 63, 2751–2768 (2014).

    Article  PubMed  Google Scholar 

  66. Tamene, A. M., Masri, C. & Konety, S. H. Cardiovascular MR imaging in cardio-oncology. Magn. Reson. Imaging Clin. N. Am. 23, 105–116 (2015).

    Article  PubMed  Google Scholar 

  67. Cardinale, D. et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J. Am. Coll. Cardiol. 55, 213–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Curigliano, G. et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann. Oncol. 23, S55–S66 (2012).

    Article  Google Scholar 

  69. Telli, M. L., Hunt, S. A., Carlson, R. W. & Guardino, A. E. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J. Clin. Oncol. 25, 3525–3533 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Tocchetti . et al. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur. J. Heart Fail. 14, 130–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Mackey, J. R. et al. Cardiac management during adjuvant trastuzumab therapy: recommendations of the Canadian Trastuzumab Working Group. Curr. Oncol. 15, 24–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sengupta, P. P., Northfelt, D. W., Gentile, F., Zamorano, J. L. & Khandheria, B. K. Trastuzumab-induced cardiotoxicity: heart failure at the crossroads. Mayo Clin. Proc. 83, 197–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Jones, A. L. et al. Management of cardiac health in trastuzumab-treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring. Br. J. Cancer 100, 684–692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Martin, M. et al. Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist 14, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Fyles, A. W. et al. Tamoxifen with or without breast irradiation in women 50 years of age or older with early breast cancer. N. Engl. J. Med. 351, 963–970 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Hughes, K. S. et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9343. J. Clin. Oncol. 31, 2382–2387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fisher, B. et al. Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant Breast and Bowel Project experience. Semin. Oncol. 28, 400–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Houghton, J. et al. Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362, 95–102 (2003).

    Article  PubMed  Google Scholar 

  79. Bijker, N. et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853--a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J. Clin. Oncol. 24, 3381–3387 (2006).

    Article  PubMed  Google Scholar 

  80. Holmberg, L. et al. Absolute risk reductions for local recurrence after postoperative radiotherapy after sector resection for ductal carcinoma in situ of the breast. J. Clin. Oncol. 26, 1247–1252 (2008).

    Article  PubMed  Google Scholar 

  81. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Dragun, A. E. et al. Increasing mastectomy rates among all age groups for early stage breast cancer: a 10-year study of surgical choice. Breast J. 18, 318–325 (2012).

    Article  PubMed  Google Scholar 

  83. Fisher, C. S. et al. Fear of recurrence and perceived survival benefit are primary motivators for choosing mastectomy over breast-conservation therapy regardless of age. Ann. Surg. Oncol. 19, 3246–3250 (2012).

    Article  PubMed  Google Scholar 

  84. Mahmood, U. et al. Increasing national mastectomy rates for the treatment of early stage breast cancer. Ann. Surg. Oncol. 20, 1436–1443 (2013).

    Article  PubMed  Google Scholar 

  85. Wang, X. et al. Cardiac motion during deep-inspiration breath-hold: implications for breast cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 82, 708–714 (2012).

    Article  PubMed  Google Scholar 

  86. Bruzzaniti, V. et al. Dosimetric and clinical advantages of deep inspiration breath-hold (DIBH) during radiotherapy of breast cancer. J. Exp. Clin. Cancer Res. 32, 88 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tang, X. et al. Clinical experience with 3-dimensional surface matching-based deep inspiration breath hold for left-sided breast cancer radiation therapy. Pract. Radiat. Oncol. 4, e151–e158 (2014).

    Article  PubMed  Google Scholar 

  88. Zagar, T. M. et al. Prospective assessment of deep inspiration breath hold to prevent radiation associated cardiac perfusion defects in patients with left-sided breast cancer [abstract 2027]. Presented at the ASTRO Annual meeting, San Antonio, TX (2015).

  89. Zellars, R. et al. SPECT analysis of cardiac perfusion changes after whole-breast/chest wall radiation therapy with or without active breathing coordinator: results of a randomized phase 3 trial. Int. J. Radiat. Oncol. Biol. Phys. 15, 778–785 (2014).

    Article  Google Scholar 

  90. Formenti, S. C., DeWyngaert, J. K., Jozsef, G. & Goldberg, J. D. Prone vs supine positioning for breast cancer radiotherapy. JAMA 308, 861–863 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Chino, J. P. & Marks, L. B. Prone positioning causes the heart to be displaced anteriorly within the thorax: implications for breast cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 70, 916–920 (2008).

    Article  PubMed  Google Scholar 

  92. Würschmidt, F., Stoltenberg, S., Kretschmer, M. & Petersen, C. Incidental dose to coronary arteries is higher in prone than in supine whole breast irradiation. A dosimetric comparison in adjuvant radiotherapy of early stage breast cancer. Strahlenther Onkol. 190, 563–568 (2014).

    Article  PubMed  Google Scholar 

  93. Mulliez, T. et al. Heart dose reduction by prone deep inspiration breath hold in left-sided breast irradiation. Radiother. Oncol. 114, 79–84 (2015).

    Article  PubMed  Google Scholar 

  94. Kalay, N. et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J. Am. Coll. Cardiol. 48, 2258–2262 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Kaya, M. G. et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int. J. Cardiol. 167, 2306–2310 (2013).

    Article  PubMed  Google Scholar 

  96. Seicean, S. et al. Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ. Heart Fail. 6, 420–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Nakamae, H. et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 104, 2492–2498 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Cadeddu, C. et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am. Heart J. 160, e1–e7 (2010).

    Article  CAS  Google Scholar 

  99. Cardinale, D. et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114, 2474–2481 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Bosch, X. et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol. 61, 2355–2362 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Kalam, K. & Marwick, T. H. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur. J. Cancer 49, 2900–2909 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Seicean, S., Seicean, A., Plana, J. C., Budd, G. T. & Marwick, T. H. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J. Am. Coll. Cardiol. 60, 2384–2390 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Acar, Z. et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J. Am. Coll. Cardiol. 58, 988–989 (2011).

    Article  PubMed  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  105. Truong, J., Yan, A. T., Cramarossa, G. & Chan, K. K. Chemotherapy-induced cardiotoxicity: detection, prevention and management. Can. J. Cardiol. 30, 869–878 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sarah Darby for her thoughtful review and advice for our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to discussions of its content, wrote the article and edited the manuscript before submission.

Corresponding author

Correspondence to Timothy M. Zagar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagar, T., Cardinale, D. & Marks, L. Breast cancer therapy-associated cardiovascular disease. Nat Rev Clin Oncol 13, 172–184 (2016). https://doi.org/10.1038/nrclinonc.2015.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.171

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer