Skip to main content
Log in

Deriving utility scores from the SF-36 health instrument using Rasch analysis

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Background

Utility scores for use in cost-utility analysis may be imputed from the SF-36 health instrument using various techniques, typically regression analysis. This paper explored imputation using partial credit Rasch analysis.

Method

Data from the Assessment of Quality of Life (AQoL) instrument validation study were re-analysed (n = 996 inpatients, outpatients and a community sample). For each AQoL item, factor analysis identified those SF-36 items forming a unidimensional scale. Rasch analysis located scale logit scores for these SF-36 items. The logit scores were used to assign AQoL item scores. The standard AQoL scoring algorithm was then applied to obtain the utility scores.

Results

Many SF-36 items were limited predictors of AQoL items; some items from both instruments obtained disordered thresholds. All imputed scores were consistent with the AQoL model and fell within AQoL score boundaries. The explained variance between imputed and true AQoL scores was 61%.

Discussion

Rasch-imputed mapping, unlike many regression-based algorithms, produced results consistent with the axioms of utility measurement, while the proportion of explained variance was similar to regression-based modelling. Item properties on both instruments implied that some items should be revised using Rasch analysis. The methods and results may be used by researchers needing to impute utility scores from SF-36 health scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AQoL:

Assessment of Quality of Life multi-attribute utility instrument

CUA:

Cost-utility analysis

DIF:

Differential item functioning

EFA:

Exploratory factor analysis

ICC:

Intra-class correlation

MAU:

Multi-attribute utility

QALY:

Quality-adjusted life year

SF-36:

Short Form-36 health survey

References

  1. Hawthorne, G., Richardson, J., & Day, N. A. (2001). A comparison of the Assessment of Quality of Life (AQoL) with four other generic utility instruments. Annals of Medicine, 33, 358–370. doi:10.3109/07853890109002090.

    Article  PubMed  CAS  Google Scholar 

  2. Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey: manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center.

    Google Scholar 

  3. Franks, P., Lubetkin, E. I., Gold, M. R., & Tancredi, D. J. (2003). Mapping the SF-12 to preference-based instruments: convergent validity in a low-income, minority population. Medical Care, 41, 1277–1283. doi:10.1097/01.MLR.0000093480.58308.D8.

    Article  PubMed  Google Scholar 

  4. Franks, P., Lubetkin, E. I., Gold, M. R., Tancredi, D. J., & Jia, H. (2004). Mapping the SF-12 to the EuroQol EQ-5D Index in a national US sample. Medical Decision Making, 24, 247–254. doi:10.1177/0272989X04265477.

    Article  PubMed  Google Scholar 

  5. Fryback, D. G., Lawrence, W. F., Martin, P. A., Klein, R., & Klein, B. E. (1997). Predicting Quality of Well-being scores from the SF-36: results from the Beaver Dam Health Outcomes Study. Medical Decision Making, 17, 1–9. doi:10.1177/0272989X9701700101.

    Article  PubMed  CAS  Google Scholar 

  6. Mortimer, D., Segal, L., Hawthorne, G., & Harris, A. (2007). Item-based versus subscale-based mappings from the SF-36 to a preference-based quality of life measure. Value in Health, 10, 398–407. doi:10.1111/j.1524-4733.2007.00194.x.

    Article  PubMed  Google Scholar 

  7. Nichol, M. B., Sengupta, N., & Globe, D. R. (2001). Evaluating quality-adjusted life years: estimation of the health utility index (HUI2) from the SF-36. Medical Decision Making, 21, 105–112. doi:10.1177/02729890122062352.

    Article  PubMed  CAS  Google Scholar 

  8. Segal, L., Day, S. E., Chapman, A. B., & Osborne, R. H. (2004). Can we reduce disease burden from osteoarthritis? An evidence-based priority setting model. The Medical Journal of Australia, 180, S11–S17.

    PubMed  Google Scholar 

  9. Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21, 271–292. doi:10.1016/S0167-6296(01)00130-8.

    Article  PubMed  Google Scholar 

  10. Brazier, J., Usherwood, T., Harper, R., & Thomas, K. (1998). Deriving a preference-based single index from the UK SF-36 Health Survey. Journal of Clinical Epidemiology, 51, 1115–1128. doi:10.1016/S0895-4356(98)00103-6.

    Article  PubMed  CAS  Google Scholar 

  11. Mortimer, D., & Segal, L. (2008). Comparing the incomparable? A systematic review of competing techniques for converting descriptive measures of health status into QALY-weights. Medical Decision Making, 28, 66–89. doi:10.1177/0272989X07309642.

    Article  PubMed  Google Scholar 

  12. Lundberg, L., Johannesson, M., Isacson, D. G., & Borgquist, L. (1999). The relationship between health-state utilities and the SF-12 in a general population. Medical Decision Making, 19, 128–140. doi:10.1177/0272989X9901900203.

    Article  PubMed  CAS  Google Scholar 

  13. Brazier, J. E., Kolotkin, R. L., Crosby, R. D., & Williams, G. R. (2004). Estimating a preference-based single index for the Impact of Weight on Quality of Life-Lite (IWQOL-Lite) instrument from the SF-6D. Value in Health, 7, 490–498. doi:10.1111/j.1524-4733.2004.74012.x.

    Article  PubMed  Google Scholar 

  14. Gray, A. M., Rivero-Arias, O., & Clarke, P. M. (2006). Estimating the association between SF-12 responses and EQ-5D utility values by response mapping. Medical Decision Making, 26, 18–29. doi:10.1177/0272989X05284108.

    Article  PubMed  Google Scholar 

  15. Thurstone, L. L. (1928). Attitudes can be measured. American Journal of Sociology, 33, 529–554. doi:10.1086/214483.

    Article  Google Scholar 

  16. Wright, B. D. (1989). Rasch model from Thurstone’s scaling requirements. Rasch Measurement Transactions, 2, 13–14.

    Google Scholar 

  17. Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models for measurement. In N. Brandon-Tuma (Ed.), Sociological methodology (pp. 33–80). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  18. Coste, J., & Pouchot, J. (2003). A grey zone for quantitative diagnostic and screening tests. International Journal of Epidemiology, 32, 304–313. doi:10.1093/ije/dyg054.

    Article  PubMed  Google Scholar 

  19. Rasch, G. (1960). In B. Rasc (Ed.), Probabilistic models for some intelligence and attainment tests (p. 184). Copenhagen, Denmark: Danmarks Paedagogiske Institut.

  20. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. doi:10.1007/BF02296272.

    Article  Google Scholar 

  21. Hawthorne, G., Richardson, J., & Osborne, R. (1999). The Assessment of Quality of Life (AQoL) instrument: a psychometric measure of health-related quality of life. Quality of Life Research, 8, 209–224. doi:10.1023/A:1008815005736.

    Article  PubMed  CAS  Google Scholar 

  22. Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573. doi:10.1007/BF02293814.

    Article  Google Scholar 

  23. Mokken, R. J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417–430. doi:10.1177/014662168200600404.

    Article  Google Scholar 

  24. Zhu, W. (1998). Test equating: what, why, how? Research Quarterly for Exercise and Sport, 69, 11–23.

    PubMed  CAS  Google Scholar 

  25. Dobrez, D., Cella, D., Pickard, A. S., Lai, J. S., & Nickolov, A. (2007). Estimation of patient preference-based utility weights from the functional assessment of cancer therapy—general. Value in Health, 10, 266–272. doi:10.1111/j.1524-4733.2007.00181.x.

    Article  PubMed  Google Scholar 

  26. Brazier, J. E., & Roberts, J. (2004). The estimation of a preference-based measure of health from the SF-12. Medical Care, 42, 851–859. doi:10.1097/01.mlr.0000135827.18610.0d.

    Article  PubMed  Google Scholar 

  27. Raczek, A. E., Ware, J. E., Bjorner, J. B., Gandek, B., Haley, S. M., Aaronson, N. K., et al. (1998). Comparison of Rasch and summated rating scales constructed from SF-36 physical functioning items in seven countries: results from the IQOLA Project. International Quality of Life Assessment. Journal of Clinical Epidemiology, 51, 1203–1214. doi:10.1016/S0895-4356(98)00112-7.

    Article  PubMed  CAS  Google Scholar 

  28. Pickard, A. S., Kohlmann, T., Janssen, M. F., Bonsel, G., Rosenbloom, S., & Cella, D. (2007). Evaluating equivalency between response systems: application of the Rasch model to a 3-level and 5-level EQ-5D. Medical Care, 45, 812–819. doi:10.1097/MLR.0b013e31805371aa.

    Article  PubMed  Google Scholar 

  29. Hawthorne, G., & Richardson, J. (2001). Measuring the value of program outcomes: a review of multiattribute utility measures. Expert Review of Pharmacoeconomics and Outcomes Research, 1, 215–228.

    Article  Google Scholar 

  30. Chan, K.-Y., Drasgow, F., & Sawin, L. L. (1999). What is the shelf life of a test? The effect of time on the psychometrics of a cognitive ability test battery. The Journal of Applied Psychology, 84, 610–619. doi:10.1037/0021-9010.84.4.610.

    Article  Google Scholar 

  31. Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(Suppl 1), 5–18. doi:10.1007/s11136-007-9198-0.

    Article  PubMed  Google Scholar 

  32. Rummel, R. J. (1970). Applied factor analysis (pp. 24–27). Evanston, IL: Northwestern University Press.

    Google Scholar 

  33. Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational Research Methods, 6, 147–168. doi:10.1177/1094428103251541.

    Article  Google Scholar 

  34. Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: a critical review and analysis. Personnel Psychology, 39, 291–314. doi:10.1111/j.1744-6570.1986.tb00583.x.

    Article  Google Scholar 

  35. Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed., p. 966). New York: Harper Collins.

    Google Scholar 

  36. Reise, S. P., Waller, N. G., & Comrey, A. L. (2000). Factor analysis and scale revision. Psychological Assessment, 12, 287–297. doi:10.1037/1040-3590.12.3.287.

    Article  PubMed  CAS  Google Scholar 

  37. Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  38. Stone, M., & Yumoto, F. (2004). The effect of sample size for estimating Rasch/IRT parameters with dichotomous items. Journal of Applied Measurement, 5, 48–61.

    PubMed  Google Scholar 

  39. Linacre, J. M. (1994). Sample size and item calibration stability. Rasch Measurement Transactions, 7, 328–331.

    Google Scholar 

  40. Pallant, J. F., & Tennant, A. (2007). An introduction to the Rasch measurement model: an example using the Hospital Anxiety and Depression Scale (HADS). The British Journal of Clinical Psychology, 46, 1–18. doi:10.1348/014466506X96931.

    Article  PubMed  Google Scholar 

  41. Hambleton, R. K., Jones, R. W., & Rogers, H. J. (1993). Influence of item parameter estimation errors in test development. Journal of Educational Measurement, 30, 143–155. doi:10.1111/j.1745-3984.1993.tb01071.x.

    Article  Google Scholar 

  42. SPSS Inc. (2004). SPSS for Windows, version 13.0. Chicago, IL: SPSS Inc.

  43. Andrich, D., Sheridan, B., & Luo, G. (2005). RUMM2020. Perth, Australia: RUMM Laboratory Pty Ltd.

    Google Scholar 

  44. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park: Sage Publications.

    Google Scholar 

  45. Dorans, N. J. (2007). Linking scores from multiple health outcome instruments. Quality of Life Research, 16(Suppl 1), 85–94. doi:10.1007/s11136-006-9155-3.

    Article  PubMed  Google Scholar 

  46. Teresi, J. A. (2006). Overview of quantitative measurement methods. Equivalence, invariance, and differential item functioning in health applications. Medical Care, 44, S39–S49. doi:10.1097/01.mlr.0000245452.48613.45.

    Article  PubMed  Google Scholar 

  47. Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(Suppl 1), 19–31. doi:10.1007/s11136-007-9183-7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by an Australian National Health and Medical Research Council (NHMRC) Project Grant, the Department of Psychiatry in the Faculty of Medicine, Dentistry and Health Sciences at The University of Melbourne and the Centre for Health Economics at Monash University. Much of this work was completed while Professor Leonie Segal was working at the Centre for Health Economics at Monash University prior to taking up her current position as the Professor of Health Economics, Division of Health Sciences, University of South Australia. The views expressed herein are the sole responsibility of the authors. The authors have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Hawthorne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawthorne, G., Densley, K., Pallant, J.F. et al. Deriving utility scores from the SF-36 health instrument using Rasch analysis. Qual Life Res 17, 1183–1193 (2008). https://doi.org/10.1007/s11136-008-9395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-008-9395-5

Keywords

Navigation