Skip to main content

Advertisement

Log in

Cardiovascular disease among breast cancer survivors: the call for a clinical vascular health toolbox

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

With better detection and treatment, breast cancer is less likely to be the primary cause of death in the majority of breast cancer survivors; mortality due to cardiovascular disease (CVD) is now more common. Given the long latency periods between cancer treatment completion and potential symptomatic CVD, there is a need to detect vascular changes before symptoms appear. This short review provides an overview of non-invasive, widely available, and relatively inexpensive techniques for assessing endothelial function, central and regional arterial stiffness, central blood pressures, and intima-media thickness. These tools exhibit acceptable reliability and validity, and are relatively practical. Clinical assessment recommendations are also provided. There is sufficient evidence to encourage the use of these techniques as a component of routine serial assessments, and to help guide appropriate treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ministry of Health (2012) Cancer patient survival change over time update: covering the period 1994 to 2009. Ministry of Health, Wellington

    Google Scholar 

  2. Gondos A, Bray F, Brewster DH et al (2008) Recent trends in cancer survival across Europe between 2000 and 2004: a model-based period analysis from 12 cancer registries. Eur J Cancer 44:1463–1475

    Article  PubMed  CAS  Google Scholar 

  3. Karim-Kos HE, de Vries E, Soerjomataram I et al (2008) Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J Cancer 44:1345–1389

    Article  PubMed  Google Scholar 

  4. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  5. Colzani E, Liljegren A, Johansson ALV et al (2011) Prognosis of patients with breast cancer: causes of death and effects of time since diagnosis, age, and tumor characteristics. J Clin Oncol 29:4014–4021

    Article  PubMed  Google Scholar 

  6. Lancellotti P, Nkomo VT, Badano LP et al (2013) Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 14:721–740

    Article  PubMed  Google Scholar 

  7. Pinder MC, Duan Z, Goodwin JS et al (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25:3808–3815

    Article  PubMed  CAS  Google Scholar 

  8. Schmitz KH, Prosnitz RG, Schwartz AL, Carver JR (2012) Prospective surveillance and management of cardiac toxicity and health in breast cancer survivors. Cancer 118:2270–2276

    Article  PubMed  Google Scholar 

  9. American Cancer Society (2011) Global cancer facts & figures, 2nd edn. American Cancer Society, Atlanta

    Google Scholar 

  10. Yancik R, Wesley MN, Ries LG et al (2001) Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years and older. JAMA 285:885–892

    Article  PubMed  CAS  Google Scholar 

  11. Chen T, Xu T, Li Y et al (2011) Risk of cardiac dysfunction with trastuzumab in breast cancer patients: a meta-analysis. Cancer Treat Rev 37:312–320

    Article  PubMed  CAS  Google Scholar 

  12. Criscitiello C, Metzger-Filho O, Saini KS et al (2012) Targeted therapies in breast cancer: are heart and vessels also being targeted? Breast Cancer Res 14. http://breast-cancer-research.com/content/14/13/209

  13. Hedhli N, Russell KS (2011) Cardiotoxicity of molecularly targeted agents. Curr Cardiol Rev 7:221–233

    Article  PubMed  CAS  Google Scholar 

  14. Volkova M, Russell R III (2011) Anthracycline toxicity: prevalance, pathogenesis and treatment. Curr Cardiol Rev 7:214–220

    Article  PubMed  CAS  Google Scholar 

  15. Yeh ETH, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247

    Article  PubMed  CAS  Google Scholar 

  16. Bonita R, Pradhan R (2013) Cardiovascular toxicities of cancer chemotherapy. Semin Oncol 40:156–167

    Article  PubMed  CAS  Google Scholar 

  17. Cardinale D, Colombo A, Torrisi R et al (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 28:3910–3916

    Article  PubMed  CAS  Google Scholar 

  18. Lahtinen R, Kuikka J, Nousiainen T et al (1991) Cardiotoxicity of epirubicin and doxorubicin: a double-blind randomized study. Eur J Haematol 46:301–305

    Article  PubMed  CAS  Google Scholar 

  19. Tan-Chiu E, Yothers G, Romond E et al (2005) Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23:7811–7819

    Article  PubMed  CAS  Google Scholar 

  20. Suter TM, Procter M, van Veldhuisen DJ et al (2007) Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol 25:3859–3865

    Article  PubMed  CAS  Google Scholar 

  21. Menna P, Paz OG, Chello M et al (2012) Anthracycline cardiotoxicity. Expert Opin Drug Saf 11:S21–S36

    Article  PubMed  CAS  Google Scholar 

  22. Demirci S, Nam J, Hubbs JL et al (2009) Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys 73:980–987

    Article  PubMed  Google Scholar 

  23. Johansen S, Tjessem KH, Fossa K et al (2013) Dose distribution in the heart and cardiac chambers following 4-field radiation therapy of breast cancer: a retrospective study. Breast Cancer Basic Clin Res 7:41–49

    Article  Google Scholar 

  24. Halle M, Gabrielsen A, Paulsson-Berne G et al (2010) Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol 55:1227–1236

    Article  PubMed  CAS  Google Scholar 

  25. Azim HA Jr, de Azambuja E, Colozza M et al (2011) Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol 22:1939–1947

    Article  PubMed  Google Scholar 

  26. Ben Aharon I, Bar Joseph H, Tzabari M et al (2013) Doxorubicin-induced vascular toxicity—targeting potential pathways may reduce procoagulant activity. PLoS One 8:e75157

    Article  PubMed  CAS  Google Scholar 

  27. Bar-Joseph H, Ben-Aharon I, Tzabari M et al (2011) In vivo bioimaging as a novel strategy to detect doxorubicin-induced damage to gonadal blood vessels. PLoS One 6:e23492

    Article  PubMed  CAS  Google Scholar 

  28. Muzaffar K, Collins SL, Labropoulos N, Baker WH (2000) A prospective study of the effects of irradiation on the carotid artery. Laryngoscope 110:1811–1814

    Article  PubMed  CAS  Google Scholar 

  29. Stewart FA, Hoving S, Russell NS (2010) Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients. Radiat Res 174:865–869

    Article  PubMed  CAS  Google Scholar 

  30. Chaosuwannakit N, D’Agostino R, Hamilton CA et al (2010) Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol 28:166–172

    Article  PubMed  CAS  Google Scholar 

  31. Drafts BC, Twomley KM, D’Agostino R Jr et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6:877–885

    Article  PubMed  Google Scholar 

  32. Kalabova H, Melichar B, Ungermann L et al (2011) Intima-media thickness, myocardial perfusion and laboratory risk factors of atherosclerosis in patients with breast cancer treated with anthracycline-based chemotherapy. Med Oncol 28:1281–1287

    Article  PubMed  CAS  Google Scholar 

  33. Mizia-Stec K, Goscinska A, Mizia M et al (2013) Anthracycline chemotherapy impairs the structure and diastolic function of the left ventricle and induces negative arterial remodelling. Kardiol Pol 71:681–690

    Article  PubMed  Google Scholar 

  34. O’Rourke MF, Kelly RP (1993) Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 11:327–337

    Article  PubMed  Google Scholar 

  35. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  36. Lekakis J, Abraham P, Balbarini A et al (2011) Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil 18:775–789

    Article  PubMed  Google Scholar 

  37. Stoner L, Sabatier MJ (2012) Use of ultrasound for non-invasive assessment of flow-mediated dilation. Journal of Atherosclerosis and Thrombosis 19:407–412

    Article  PubMed  Google Scholar 

  38. Corretti MC, Anderson TJ, Benjamin EJ et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265

    Article  PubMed  Google Scholar 

  39. Inaba Y, Chen JA, Bergmann SR (2010) Prediction of future cardiovascular outcomes by flow-mediated vasodilation of brachial artery: a meta analysis. Int J Cardiovasc Imaging 25:705–711

    Google Scholar 

  40. Pala S, Kahveci G, Akcakoyun M et al (2009) Reliability of ultrasonography in detecting flow mediated dilation. Int J Cardiovasc Imaging 25:705–711

    Article  PubMed  Google Scholar 

  41. Welsch MA, Allen JD, Geaghan JP (2002) Stability and reproducibility of brachial artery flow-mediated dilation. Med Sci Sports Exerc 34:960–965

    Article  PubMed  Google Scholar 

  42. Stoner L, Tarrant MA, Fryer S, Faulkner J (2013) How should flow-mediated dilation be normalized to its stimulus?. Clin Physiol Funct Imaging 33:75–78

    Article  PubMed  Google Scholar 

  43. Woodman RJ, Playford DA, Watts GF et al (2001) Improved analysis of brachial artery ultrasound using a novel edge-detection software system. J Appl Physiol 91:929–937

    PubMed  CAS  Google Scholar 

  44. Ikonomidis I, Papadimitriou C, Vamvakou G et al (2008) Treatment with granulocyte colony stimulating factor is associated with improvement in endothelial function. Growth Factors 26:117–124

    Article  PubMed  CAS  Google Scholar 

  45. Nastri CO, Martins WP, Ferriani RA et al (2008) Sonographic evaluation of endothelial function in letrozole and tamoxifen users. Maturitas 61:340–344

    Article  PubMed  CAS  Google Scholar 

  46. Stamatelopoulos KS, Lekakis JP, Poulakaki NA et al (2004) Tamoxifen improves endothelial function and reduces carotid intima-media thickness in postmenopausal women. Am Heart J 147:1093–1099

    Article  PubMed  CAS  Google Scholar 

  47. Chirinos JA (2012) Arterial stiffness: basic concepts and measurement techniques. J Cardiovasc Transl Res 5:243–255

    Article  PubMed  Google Scholar 

  48. Kullo IJ, Malik AR (2007) Arterial ultrasonography and tonometry as adjuncts to cardiovascular risk stratification. J Am Coll Cardiol 49:1413–1426

    Article  PubMed  Google Scholar 

  49. Laurent S, Cockcroft J, Van Bortel L et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  50. Zoungas S, Asmar RP (2007) Arterial stiffness and cardiovascular outcome. Clin Exp Pharmacol Physiol 34:647–651

    Article  PubMed  CAS  Google Scholar 

  51. Nelson AJ, Worthley SG, Cameron JD et al (2009) Cardiovascular magnetic resonance-derived aortic distensibility: validation and observed regional differences in the elderly. J Hypertens 27:535–542

    Article  PubMed  CAS  Google Scholar 

  52. Calabia J, Torguet P, Garcia M et al (2011) Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method. Cardiovasc Ultrasound 9:13

    Article  PubMed  Google Scholar 

  53. Grotenhuis HB, Westenberg JJM, Steendijk P et al (2009) Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J Magn Reson Imaging 30:521–526

    Article  PubMed  Google Scholar 

  54. Jatoi NA, Mahmud A, Bennett K, Feely J (2009) Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques*. J Hypertens 27:2186–2191

    Article  PubMed  CAS  Google Scholar 

  55. The Reference Values for Arterial Stiffness C (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 31:2338–2350

    Article  Google Scholar 

  56. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  57. Climie RED, Schultz MG, Nikolic SB et al (2012) Validity and reliability of central blood pressure estimated by upper arm oscillometric cuff pressure. Am J Hypertens 25:414–420

    Article  PubMed  Google Scholar 

  58. Weber T, O’Rourke KS, Kvas E et al (2005) Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J 26:2657–2663

    Article  PubMed  Google Scholar 

  59. Vlachopoulos C, Aznaouridis K, O’Rourke MF et al (2010) Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 31:1865–1871

    Article  PubMed  Google Scholar 

  60. Weber T, O’Rourke MF, Lassnig E et al (2010) Pulse waveform characteristics predict cardiovascular events and mortality in patients undergoing coronary angiography. J Hypertens 28:797–805

    Article  PubMed  CAS  Google Scholar 

  61. Smith JC, Bennett S, Evans LM et al (2001) The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab 86:4261–4267

    Article  PubMed  CAS  Google Scholar 

  62. Zuo J-L, Li Y, Yan Z-J et al (2010) Validation of the central blood pressure estimation by the SphygmoCor system in Chinese. Blood Press Monit 15:268–274

    Article  PubMed  Google Scholar 

  63. Lin ACW, Lowe A, Sidhu K et al (2012) Evaluation of a novel sphygmomanometer, which estimates central blood pressure from analysis of brachial artery suprasystolic pressure waves. J Hypertens 30:1743–1750

    Article  PubMed  CAS  Google Scholar 

  64. Lowe A, Harrison W, El-Aklouk E et al (2009) Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms. J Biomech 42:2111–2115

    Article  PubMed  CAS  Google Scholar 

  65. Agabiti-Rosei E, Mancia G, O’Rourke MF et al (2007) Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension 50:154–160

    Article  PubMed  CAS  Google Scholar 

  66. Avolio AP, Van Bortel LM, Boutouyrie P et al (2009) Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension 54:375–383

    Article  PubMed  CAS  Google Scholar 

  67. Sharman JE, Marwick TH, Gilroy D et al (2013) Randomized trial of guiding hypertension management using central aortic blood pressure compared with best-practice care: principal findings of the BP GUIDE study. Hypertension. doi:10.1161/HYPERTENSIONAHA.1113.02001

  68. Peters SA, den Ruijter HM, Palmer MK et al (2012) Manual or semi-automated edge detection of the maximal far wall common carotid intima-media thickness: a direct comparison. J Intern Med 271:247–256

    Article  PubMed  CAS  Google Scholar 

  69. Bots ML, Sutton-Tyrrell K (2012) Lessons from the past and promises for the future for carotid intima-media thickness. J Am Coll Cardiol 60:1599–1604

    Article  PubMed  Google Scholar 

  70. Greenland P, Alpert JS, Beller GA et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 56:e50–e103

    Article  PubMed  Google Scholar 

  71. Peters SAE, Grobbee DE, Bots ML (2011) Carotid intima-media thickness: a suitable alternative for cardiovascular risk as outcome? Eur J Cardiovasc Prev Rehabil 18:167–174

    Article  PubMed  Google Scholar 

  72. Lorenz MW, Markus HS, Bots ML et al (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115:459–467

    Article  PubMed  Google Scholar 

  73. Howard G, Sharrett AR, Heiss G et al (1993) Carotid artery intimal-medial thickness distribution in general populations as evaluated by B-mode ultrasound. ARIC Investigators. Stroke 24:1297–1304

    Article  PubMed  CAS  Google Scholar 

  74. Redberg RF, Vogel RA, Criqui MH et al (2003) Task force #3—what is the spectrum of current and emerging techniques for the noninvasive measurement of atherosclerosis? J Am Coll Cardiol 41:1886–1898

    Article  PubMed  Google Scholar 

  75. Salonen JT, Salonen R (1993) Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation 87:1156–1165

    Google Scholar 

  76. Melichar B, Kalabova H, Krcmova L et al (2009) Effect of aromatase inhibitors on lipid metabolism, inflammatory response and antioxidant balance in patients with breast carcinoma. Anticancer Res 29:3337–3346

    PubMed  CAS  Google Scholar 

  77. Kobayashi K, Akishita M, Yu W et al (2004) Interrelationship between non-invasive measurements of atherosclerosis: flow-mediated dilation of brachial artery, carotid intima-media thickness and pulse wave velocity. Atherosclerosis 173:13–18

    Article  PubMed  CAS  Google Scholar 

  78. Koivistoinen T, Virtanen M, Hutri-Kahonen N et al (2012) Arterial pulse wave velocity in relation to carotid intima-media thickness, brachial flow-mediated dilation and carotid artery distensibility: the Cardiovascular Risk in Young Finns Study and the Health 2000 Survey. Atherosclerosis 220:387–393

    Article  PubMed  CAS  Google Scholar 

  79. Yan RT, Anderson TJ, Charbonneau F et al (2005) Relationship between carotid artery intima-media thickness and brachial artery flow-mediated dilation in middle-aged healthy men. J Am Coll Cardiol 45:1980–1986

    Article  PubMed  Google Scholar 

  80. Holewijn S, den Heijer M, Kiemeney LA et al (2014) Combining risk markers improves cardiovascular risk prediction in women. Clin Sci 126:139–146

    Article  PubMed  Google Scholar 

  81. Stoner L, Lambrick DM, Faulkner J, Young J (2013) Guidelines for the use of pulse wave analysis in adults and children. J Atheroscler Thromb 20:404–406

    Article  PubMed  Google Scholar 

  82. Carver JR, Szalda D, Ky B (2013) Asymptomatic cardiac toxicity in long-term cancer survivors: defining the population and recommendations for surveillance. Semin Oncol 40:229–238

    Article  PubMed  CAS  Google Scholar 

  83. Hamilton PK, Lockhart CJ, Quinn CE, McVeigh GE (2007) Arterial stiffness: clinical relevance, measurement and treatment. Clin Sci (Lond) 113:157–170

    Article  CAS  Google Scholar 

  84. Papaioannou TG, Protogerou AD, Nasothimiou EG et al (2012) Assessment of differences between repeated pulse wave velocity measurements in terms of ‘bias’ in the extrapolated cardiovascular risk and the classification of aortic stiffness: is a single PWV measurement enough? J Hum Hypertens 26:594–602

    Article  PubMed  CAS  Google Scholar 

  85. Matsui Y, Kario K, Ishikawa J et al (2004) Reproducibility of arterial stiffness indices (pulse wave velocity and augmentation index) simultaneously assessed by automated pulse wave analysis and their associated risk factors in essential hypertensive patients. Hypertens Res 27:851–857

    Article  PubMed  Google Scholar 

  86. Laugesen E, Rossen NB, Hoyem P et al (2013) Reproducibility of pulse wave analysis and pulse wave velocity in patients with type 2 diabetes. Scand J Clin Lab Invest 73:428–435

    Article  PubMed  Google Scholar 

  87. Sharman JE, Marwick TH, Gilroy D et al (2013) Randomized trial of guiding hypertension management using central aortic blood pressure compared with best-practice care: principal findings of the BP GUIDE study. Hypertension. doi:10.1161/HYPERTENSIONAHA.113.02001

  88. Ghiadoni L, Faita F, Salvetti M et al (2012) Assessment of flow-mediated dilation reproducibility: a nationwide multicenter study. J Hypertens 30:1399–1405

    Article  PubMed  CAS  Google Scholar 

  89. Inaba Y, Chen JA, Bergmann SR (2010) Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging 26:631–640

    Article  PubMed  Google Scholar 

  90. Stoner L, Sabatier MJ (2012) Use of ultrasound for non-invasive assessment of flow-mediated dilation. J Atheroscler Thromb 19:407–421

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynnette M. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, L.M., Stoner, L., Brown, C. et al. Cardiovascular disease among breast cancer survivors: the call for a clinical vascular health toolbox. Breast Cancer Res Treat 142, 645–653 (2013). https://doi.org/10.1007/s10549-013-2766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2766-9

Keywords

Navigation