Abstract: As the population ages, an increasing number of elderly patients will need surgery. An organized medical evaluation that focuses on the patient's cardiopulmonary and nutritional status should be performed before the patient undergoes surgery. The initial history and physical examination should be performed up to 8 weeks before surgery. Follow-up examinations are then dictated by the results of the initial examination. Established guidelines to assess cardiopulmonary and nutritional status should be followed. Preoperative laboratory assessment should consist of hemoglobin and creatinine measurements and include a urinalysis and electrocardiogram. The need for additional tests is indicated by the history and physical examination. Following this assessment, therapeutic and prophylactic measures to reduce surgical morbidity and mortality can be implemented. With timely identification and management of medical disease in geriatric surgical patients, the risks of surgery can be minimized. (J Am Board Fam Pract 1991; 4:251-8.)

With the well-noted aging of the US population and the improved health of the elderly, an increasing number of elderly patients will be candidates for surgery. At the same time, more primary care physicians will be called upon to provide presurgical medical evaluations for these patients. Physicians assessing elderly patients should be aware of the major causes of morbidity and mortality associated with surgery in this group so they can provide a sound presurgical medical evaluation.

The many physiologic changes that occur with aging increase the vulnerability of the elderly to the stresses of surgery. Some changes include decreased cardiopulmonary reserve, decreased hepatic and renal function, altered body composition, decreased gastric and gastrointestinal motility, decreased immunologic function, decreased sensory abilities, and increased susceptibility to complications from bed rest.\(^1\)\(^-\)\(^5\) In addition, individual variation in physiologic function is more pronounced with aging, which increases the importance of an individualized assessment of risk or suitability for surgery.\(^6\)

In general, studies assessing morbidity in and mortality of geriatric surgical patients have been poorly controlled for age and concomitant disease, have lacked control groups and uniformly accepted reporting criteria for age and outcome, and have suffered from selection bias.\(^7\)\(^-\)\(^11\) Nevertheless, these data indicate a trend toward increased death rates of geriatric surgical patients. It is possible that many elderly patients have been denied elective surgery, only to undergo semi-elective or emergency surgery later, which would account for much of the age-related mortality. Results of a study of Djokovic and Hedley-Whyte,\(^12\) in which outcomes of patients older than 80 years were grouped according to the American Society of Anesthesiologists classification (Table 1), point to concomitant disease as the cause of excess mortality in geriatric surgical patients and support the concept of individualized risk assessment (Table 2).

Most problems encountered in elderly surgical patients are due to cardiac, pulmonary, and infectious complications that occur in addition to the primary disease process.\(^11\)\(^-\)\(^13\) A preoperative evaluation of the geriatric patient therefore would assess these areas, as well as nutrition, and include steps to prevent deep venous thrombosis.

The Preoperative History and Physical Examination

A geriatric patient should undergo a preoperative evaluation several weeks in advance of hospitalization. The history should include information about the patient's current condition requiring surgery, any past surgical procedures, and the patient's experience with anesthesia. The physician should inquire about any chronic medical problems, particularly those involving the heart and lungs. Medications, including over-the-
Table 1. American Society of Anesthesiologists Physical Status Classification.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Healthy</td>
</tr>
<tr>
<td>2</td>
<td>Mild systemic disease; neonates; aged > 80 years</td>
</tr>
<tr>
<td>3</td>
<td>Severe systemic disease</td>
</tr>
<tr>
<td>4</td>
<td>Severe, life-threatening systemic disease</td>
</tr>
<tr>
<td>5</td>
<td>Moribund</td>
</tr>
</tbody>
</table>

counter medication, should be noted. A functional assessment should be performed, and the physician should review the patient’s social supports and need for assistance upon hospital discharge. A history of smoking and alcohol use should be elicited, and the patient should be told to stop smoking 8 or more weeks before surgery.14

The physician should perform the physical examination of the elderly patient several weeks in advance of surgery and a prehospitalization examination closer to the time of surgery if warranted by the patient’s medical status. The focus should be cardiopulmonary, i.e., signs of congestive heart failure and chronic obstructive pulmonary disease. The physician should note any signs of malnutrition and administer a baseline mental status examination, using a standardized testing format.

At the time of the preoperative evaluation, the patient can be told what to expect during hospitalization and the perioperative period, and information about the anticipated postoperative functional status can be provided. The patient’s desires about code status, should complications arise, can also be addressed.

The Preoperative Cardiac Assessment

Goldman’s cardiac risk profile for noncardiac surgery (Table 3) is useful to predict perioperative morbidity and mortality.15-17 Each risk factor in the index is assigned points, and an estimation of risk is calculated based upon the number of points a patient accumulates (Table 4). In general, patients who fall into classes 3 and 4 of the cardiac risk index should be monitored intensively throughout the perioperative period, using Swan Ganz catheters to measure pulmonary arterial blood pressures, or have surgery postponed until their condition improves. The cardiac risk index may not be predictive for peripheral vascular surgery. Patients undergoing peripheral vascular surgery warrant cardiac stress testing, either an exercise electrocardiogram (ECG) or dipyridamole-thallium imaging, because of the high incidence of previously undetected coronary artery disease reported in such persons.18-21

Age greater than 70 years is a risk factor in the cardiac index. Although age alone is not a significant risk factor, with advancing age the higher prevalence of concomitant disease can increase surgical risk.

Myocardial infarction within the previous 6 months puts the patient at increased risk for cardiac morbidity. Reinfarction rate is 37 percent if surgery is performed within 3 months after myocardial infarction,22 stabilizing at 5 percent after this 6-month period. In patients who have had a recent myocardial infarction (within 3 months), morbidity and mortality from surgery managed with intensive monitoring and blood pressure control are comparable to that of patients who had a myocardial infarction more than 6 months before surgery.23 Some recommend that elective surgery be performed 6 or more months after myocardial infarction, semielective surgery be performed 4 to 6 weeks after myocardial infarction with intensive monitoring and blood pressure control, and emergency surgery be performed with intensive monitoring.17 Several studies have shown that assessment of left ventricular function can help determine the prognosis and the intensity of monitoring needed for patients with a history of myocardial infarction or congestive heart failure.24-26

Angina, though not mentioned as a risk factor in the cardiac risk profile, poses some added risk for noncardiac surgery. Stable angina should be managed medically because the combined risks of catheterization, coronary artery bypass grafting (CABG), and surgery are greater than those of surgery alone in this patient population. The physician should evaluate and treat unstable angina preoperatively. After CABG, patients are at no
increased risk for surgery on the basis of coronary artery disease.24,27

A history of congestive heart failure increases the risks for postoperative pulmonary edema.28 This complication occurs in 2 percent of patients with no history of congestive heart failure, 6 percent with a history of this disease but a normal examination, and up to 35 percent of patients with congestive heart failure apparent on examination. A preoperative radionuclide cardiogram to determine left ventricular ejection fraction can be of prognostic value and help direct perioperative care.25,26

Congestive heart failure should be treated and the patient stabilized before surgery is performed. The physician should exercise care to prevent excessive diuresis because of the risks of intraoperative or perioperative hypotension. The patient's volume status should be monitored closely throughout the perioperative period. Valvular heart disease confers increased risk for surgery,15,17,28 and the physician should evaluate the severity of the patient's valvular disease preoperatively. If valve replacement is not an option or is not warranted by the severity of disease, then the patient's blood pressure and volume status should be closely monitored to allow the physician to respond promptly to the changes induced by anesthesia and the stress of surgery.

Arrhythmias, generally a marker for coronary artery disease, are a risk factor for perioperative congestive heart failure and ischemia or infarction. Further cardiac work-up is indicated in the presence of arrhythmias. Premature ventricular contractions in the absence of heart disease are not considered a risk factor.29 Antiarrhythmic medication is warranted only for symptomatic or life-threatening arrhythmias.30

Patients with underlying cardiac conditions (congestive heart failure or ischemia) should be stabilized preoperatively. Supraventricular arrhythmias should be controlled preoperatively, and medication for the arrhythmia should be continued in the perioperative period. Though controversial, digoxin can be used prophylactically in elderly patients undergoing pulmonary surgery who have a history of valvular disease or previous valve surgery or who have a history of paroxysmal supraventricular tachycardia.

Emergency surgery increases the risks of surgery two to four times, particularly in the elderly.

Table 3. Cardiac Risk Index.*

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged > 70 years</td>
<td>5</td>
</tr>
<tr>
<td>Myocardial infarction within last 6 months</td>
<td>10</td>
</tr>
<tr>
<td>Si gallop or jugular venous distention</td>
<td>11</td>
</tr>
<tr>
<td>Significant valvular stenosis</td>
<td>3</td>
</tr>
<tr>
<td>Rhythm other than sinus or premature atrial contractions</td>
<td>7</td>
</tr>
<tr>
<td>Premature ventricular contractions > 5/min.</td>
<td>7</td>
</tr>
<tr>
<td>Poor general medical condition</td>
<td>3</td>
</tr>
<tr>
<td>Abdominal or thoracic aorta surgery</td>
<td>3</td>
</tr>
<tr>
<td>Emergency surgery</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
</tr>
</tbody>
</table>

Abdominal, thoracic, and aortic surgeries pose major pulmonary risks and are also risk factors for perioperative myocardial infarction.22

Hypertension is another important cardiovascular consideration in the preoperative assessment.12,32,33 Surgery can be performed if the patient's diastolic blood pressure is 110 mmHg or less and the systolic blood pressure is 200 mmHg or less. The physician should closely monitor the patient's blood pressure perioperatively. Higher blood pressures should be controlled, preferably for 2 to 4 weeks, before proceeding with surgery. The patient should continue to take blood pressure medications up to the morning of surgery. Intravenous medications may be necessary during surgery or postoperatively if the patient is not able to take oral medications. The rate of postoperative hypertension is 25 percent regardless of the degree of preoperative control.

Myocardial infarction is most likely to occur within the first 6 postoperative days, with 60 per-
cent of episodes occurring within 3 days of surgery. Up to 50 percent of these myocardial infarctions are painless or have atypical symptoms. The mortality rate for perioperative myocardial infarctions has been reported to approach 50 percent. An ECG should be obtained within 24 hours postoperatively and then again within 3 to 5 days.15,22

Postoperative hypertension and worsening congestive heart failure secondary to pain, hypoxia, or excitement can occur 30 to 60 minutes after cessation of anesthesia. Hypertension or worsening congestive heart failure secondary to fluid mobilization can occur 2 to 3 days after surgery. The physician can prevent or minimize these complications by providing adequate analgesia, sedation, or diuresis in a timely manner.

Preoperative Pulmonary Assessment
The history, pulmonary examination, and an awareness of the causes of surgery-associated pulmonary morbidity help the physician identify patients at risk for pulmonary complications. The major pulmonary complications are atelectasis, pneumonia, and bronchitis. Some pulmonary risk factors predisposing a patient to these complications are obesity, cough, dyspnea, smoking, abdominal or thoracic surgery, and history of lung disease.14-37 The most significant risk factor is the site of surgery, with abdominal and thoracic surgery having a complication rate as high as 40 percent. As a rule, the closer the surgery is to the diaphragm, the higher the risk for pulmonary complications.

The at-risk patient should have a chest radiograph, and the physician should consider pulmonary function testing and measuring arterial blood gases. Some indicators of high risk are presented in Table 5; however, there are no preoperative guidelines that absolutely define prohibitive lung function.36,37

The patient at risk for pulmonary complications will need some preparation for surgery to minimize the chances of their occurrence. If the patient who smokes cigarettes quits 8 weeks before surgery, the mucociliary transport mechanism will recover, the secretions will decrease, and the carbon monoxide levels in the blood will drop. Bronchodilators, if indicated by pulmonary function testing, should be prescribed to increase pulmonary function. Any pulmonary infection should be treated preoperatively. The patient should be instructed in incentive spirometry and deep-breathing exercises, as they have been shown to decrease pulmonary complications by up to 50 percent.38 Finally, the patient should be told about and be given an opportunity to ask questions or voice concerns about the possibility of postoperative ventilator support.

Nutritional Assessment
Malnourished patients experience increased surgical morbidity and mortality.39-41 A preoperative nutritional evaluation should assess any risk factors for malnutrition found during the history and physical examination. Social isolation, limited financial resources, poor dentition, weight loss, and chronic medical diseases, such as chronic obstructive lung disease, congestive heart failure, depression, diarrhea, or constipation, are risk

| Table 6. Risk Groups for Venous Thromboembolism According to Surgical Site.* |
|---------------------------------|-----------------------------|
| Patient Group | Incidence of Venous Thrombosis (%) | Recommended Prophylaxis |
| Hip fracture or total hip replacement | 40-70 | Adjusted-dose heparin, warfarin, low-dose heparin |
| Total knee replacement | 40-70 | Pneumatic compression |
| Urologic surgery | 15-20 | Pneumatic compression |
| General and gynecologic surgery | 15-20 | Low-dose heparin |
| Neurologic surgery | 15-20 | Pneumatic compression |

factors commonly associated with malnutrition. In addition, many patients will not be able to eat for varying periods before and after the surgical procedures. If there are nutritional concerns, the patient's serum albumin should be measured, because serum albumin is a sensitive indicator of malnutrition. If the patient's nutritional status is in further question, additional protein measurements and anthropometric data can be reviewed, and preoperative nutritional supplementation should be provided. Although the duration of supplementation needed is uncertain, it has been suggested that a minimum of 7 to 10 days of oral or intravenous supplementation is needed to result in any benefit.

Preoperative Laboratory Screening

Laboratory assessment is a more controversial component of the preoperative evaluation. Several studies have reported that most routine preoperative laboratory tests are ordered without any indication, although selective ordering of laboratory tests for specific indications is appropriate. A typical routine preoperative laboratory assessment consists of a complete blood count, urinalysis, prothrombin time (PT), partial thromboplastin time (PTT), chemistry profile, ECG, and chest radiograph.

No data support a routine complete blood count. A hemoglobin measurement can detect unsuspected anemia and provide a baseline measure in the event of hemorrhagic complications. A serum creatinine measurement can indicate any decline in renal function that comes with aging (using the formula by Cockroft and Gault) and thus direct the physician to avoid prescribing potentially nephrotoxic drugs. The urinalysis provides a high yield at a low cost and can be a prudent screening tool for patients aged 60 years or older. Several studies have shown that the PT, PTT, and chemistry profile are not indicated as routine preoperative screening tests. Findings from a preoperative ECG generally have little impact on clinical management of the patient despite the high rate of "positive" findings, it can be indicated as part of the pulmonary assessment.

Deep Venous Thrombosis Prophylaxis

Prophylaxis against deep venous thrombosis reduces the morbidity and mortality associated with this common complication of surgery and should be provided to the patient during the perioperative period for most surgical procedures.

Some of the risk factors associated with deep venous thrombosis include history of deep venous thrombosis or pulmonary embolus, lower extremity orthopedic surgery, malignancy, obesity, congestive heart failure, cerebrovascular accident, immobilization, and surgery lasting longer than 30 minutes. The site and type of surgery also are important in determining the level of risk for occurrence of deep venous thrombosis (Table 6).

The most commonly recommended drugs for preventing deep vein thrombosis are warfarin and heparin (low dose and adjusted dose). Intermittent pneumatic compression stockings are also commonly used. The method chosen is determined by the type of surgery and risk status of the patient. Low-dose heparin or intermittent pneumatic compression is recommended for moderate-risk patients and should be considered for low-risk patients. Warfarin is recommended for patients undergoing orthopedic hip surgery or for hip fracture and should be considered for high-risk patients. Adjusted-dose heparin is also

Preoperative Evaluation of the Elderly 255
effective in patients undergoing total hip replacement surgery (Table 7). \(^5\) Intermittent pneumatic compression should be used with neurosurgical procedures. \(^9,60,62\)

Prophylaxis for deep venous thrombosis begins preoperatively. Intermittent pneumatic compression stockings are usually put on while the patient is on the operating table and are kept on until the patient can walk. Administration of low-dose heparin (5000 U subcutaneously every 8 to 12 hours) should begin 2 hours before surgery and continue until hospital discharge. Warfarin is generally administered the day before surgery and continued, along with monitoring the PTT and adjusting the dose, until hospital discharge. For high-risk patients, postoperative screening for asymptomatic deep venous thrombosis can help determine the need for extended anticoagulant therapy. \(^63\)

Conclusion

Though surgery in the geriatric patient can involve increased risks, these increased risks do not result from age, but from the presence of concomitant disease. If physicians perform careful preoperative assessments, focusing on the cardio-pulmonary and nutritional status of the patient, they can make appropriate management decisions to minimize these risks. Prophylactic steps can be taken to minimize the chances of complications, and physicians can thus improve the chances for a successful outcome for the geriatric surgical patient.

References

57. Collins R, Scringour A, Yusef S, Petto R. Reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin. Overview of results of randomized trials in

Be sure to send us your ABFP identification number. This is shown as the middle group of five digits on the first line of your address label. Please allow about six weeks for us to add your new address to the database. Thank You.