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Introduction: High-quality primary care can reduce avoidable emergency department visits and emergency
hospitalizations. The availability of electronic medical record (EMR) data and capacities for data storage and
processing have created opportunities for predictive analytics. This systematic review examines studies which
predict emergency department visits, hospitalizations, and mortality using EMR data from primary care.

Methods: Six databases (Ovid MEDLINE, PubMed, Embase, EBM Reviews (Cochrane Database of Systematic
Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Cochrane
Methodology Register, Health Technology Assessment, NHS Economic Evaluation Database), Scopus, CINAHL)
were searched to identify primary peer-reviewed studies in English from inception to February 5, 2020. The
search was initially conducted on January 18, 2019, and updated on February 5, 2020.

Results: A total of 9456 citations were double-reviewed, and 31 studies met the inclusion criteria. The
predictive ability measured by C-statistics (ROC) of the best performing models from each study ranged from
0.57 to 0.95. Less than half of the included studies used artificial intelligence methods and only 7 (23%)
were externally validated. Age, medical diagnoses, sex, medication use, and prior health service use were the
most common predictor variables. Few studies discussed or examined the clinical utility of models.

Conclusions: This review helps address critical gaps in the literature regarding the potential of pri-
mary care EMR data. Despite further work required to address bias and improve the quality and
reporting of prediction models, the use of primary care EMR data for predictive analytics holds prom-
ise. ( J Am Board Fam Med 2024;37:583–606.)

Keywords: Artificial Intelligence, Electronic Health Records, Emergency Room Visits, Hospitalization, Primary

Health Care, Systematic Review

Introduction
Primary health care is the foundation of health sys-
tems. High-quality primary care reduces the need

for more expensive acute health services and is asso-
ciated with improved population health out-
comes.1,2 Strengthening primary health care has a
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direct impact on system performance and resiliency
during public health emergencies.3,4 Rising health
care costs5–7, increases in health services utiliza-
tion,8 and the limits to the capacities of acute care
services9–11, drive the need for more proactive and
preventative interventions in primary health care.12

Past research has identified that some hospitaliza-
tions and a significant proportion of emergency
department visits are preventable and amenable to
primary care intervention.13

Primary health care offers a unique and effective
setting to intervene to reduce acute health service
use, the need for costly interventions, and to reduce
premature mortality.14 Greater engagement by
patients with primary care has been associated with
decreased risk of emergency hospitalization,15 and
emergency department visits,16 and early contact
after hospital discharge has been found to reduce
readmissions by as much as 50%.17,18 Primary
health care plays a significant role in patient coor-
dination of care and the redistribution of health
system burden and resource use.19

We now have an opportunity to implement
data-driven approaches to support clinical decision
making and to reduce acute care service use
through proactive care within primary care set-
tings.9,20 Over the past decade, the adoption of
electronic medical records (EMR) within primary
health care has gained momentum. According to
the Commonwealth Fund International Health
Policy survey, the number of family physicians who
report using EMRs in practice has grown steadily
in recent years.21 This is particularly true in the
United States and Canada, where rates of EMR use
have doubled over 10 years (46% to 92% and 37%
to 86%, respectively). As of 2019, an average of
93% of primary care physicians report using EMRs
in practice internationally.22,23 The longitudinal
nature and population-based health approach of
primary care means that primary care EMRs offer
a rich source of data that holds the potential for
use in predictive analytics.24,25 Furthermore, the
growth in primary care EMR data availability,
coupled with advances in data storage and proc-
essing capabilities, have paved the way for new
technologies, such as artificial intelligence, to
improve medical care.26,27

Expanding on prior systematic reviews that
have explored the use of prediction models for
identifying hospitalizations, ED visits, or mortal-
ity, there are notable gaps in the literature regard-
ing the use of primary care EMR data. Although
prior reviews have made significant contributions
in predicting these outcomes, they predominantly
feature studies reliant on hospital data, or admin-
istrative health databases such as physician bill-
ing claims databases, rather than solely focusing
on EMR data.28–31 Moreover, even within
reviews focused on EMR data, substantial gaps
remain, particularly emphasizing the use of pri-
mary care EMR data.32–34 Furthermore, many
of these studies have found variable performance
and modest discriminative ability. Given the lon-
gitudinal nature and richness of primary care
EMR data, using such data in prediction models
has the potential to significantly enhance model
performance.

Despite the need and opportunity for data-
driven, proactive primary care interventions, little is
known about the prevalence, rigor, and clinical suit-
ability of prediction models that process primary
care data to predict of emergency department visits,
hospitalizations, and mortality. Currently, no previ-
ous review has thoroughly examined the use of pri-
mary care EMR data in these outcomes. This
review aims to address these intersecting gaps, pro-
viding a nuanced understanding of prediction mod-
els which use EMR data within primary care
settings. Considering the gaps in literature, this sys-
tematic review aims to address the following pri-
mary research question: what are the published
studies on the use of primary health care EMR data
to predict emergency department visits, hospitaliza-
tions, and mortality? Our objectives were threefold:
1) to examine candidate predictors which contrib-
ute to high-performance prediction models; 2)
describe model performance; and 3) identify and
report on existing model’s contributions to clinical
care and decision making.

Methods
A systematic review was conducted to identify all rele-
vant studies on the use of primary care electronic med-
ical record data to predict emergency department
visits, hospitalizations, and mortality. The study proto-
col was registered with the International Prospective
Register of Systematic Reviews (PROSPERO, regi-

Ontario, Canada, M5B 1W8 (E-mail: andrew.pinto@
utoronto.ca).
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stration: CRD42020136625), and results are pre-
sented in accordance with Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.

Databases and Search Strategy

Six electronic databases (Ovid MEDLINE, PubMed,
Embase, EBM Reviews (Cochrane Database of
Systematic Reviews, Database of Abstracts of
Reviews of Effects, Cochrane Central Register
of Controlled Trials, Cochrane Methodology
Register, Health Technology Assessment, NHS
Economic Evaluation Database), Scopus, CINAHL)
were used to search the peer-reviewed literature
from inception. The search was initially conducted
on January 18, 2019, and updated on February 5,
2020. The Journal of Medical Internet Research
(JMIR), Journal of Medical Informatics (JMI) and
the Journal of the American Medical Informatics
Association (JAMIA), as well as the reference lists of
selected studies, were hand-searched for additional
citations. In consultation with an information spe-
cialist, specific search strategies were developed for
each database (sample search strategy can be found
in Appendix A).

Eligibility Criteria

Studies were included if they were: (1) primary
quantitative studies; (2) evaluated the perform-
ance of a new statistical or mathematical model,
algorithm, or other forms of model, or external
validation of an existing model; (3) predicted a
single endpoint outcome of either emergency
department visits, hospitalization, or mortality;
(4) used electronic medical record data from out-
patient primary health care. We included studies
related to people of any age. Exclusion criteria
include data originating from article records or
sources outside of primary care, such as emer-
gency departments, census data, or surveys.
Commentaries, editorials, thesis dissertations,
and reviews were also excluded. Included studies
were restricted to those published in English;
however, no restrictions were made to the search
by country.

Study Identification

After removing duplications, all relevant cita-
tions were imported into DistillerSR (Evidence
Partners, Ottawa, ON) to support citation man-
agement, screening, and conflict resolution. A

number of study volunteers were engaged and
trained to assist with reviewing citations. Title
and abstracts were screened by 2 independent
reviewers to assess for study inclusion. The full
texts that were considered suitable for inclusion
were reviewed by 2 independent members of the
study team to ensure eligibility and then pro-
ceeded to data extraction. Any disagreements
between reviewers were addressed by the study
team and resolved with the principal investigator
(ADP) as the arbitrator.

Data Extraction

A standardized data extraction form was devel-
oped in accordance with guidelines established
by the Checklist for Critical Appraisal and
Data Extraction for Systematic Reviews of Prediction
Modeling Studies (CHARMS)35 and was prepiloted
by study team members (Appendix B). Relevant data
were extracted in duplicate (R.J., T.C.), and disagree-
ments were resolved through study team meetings.
The extracted data included information on the study
setting and participants, data sources, outcomes, pre-
dictor variables, sample size, missing data, model de-
velopment, and results. If information was not
available from an article it was noted during data
extraction.

Data Synthesis and Analysis

Meta-analysis was considered to examine pooled
outcomes of model performance, however, hetero-
geneity in terms of study settings, populations,
data, and outcomes precluded this approach, and it
was deemed not feasible for this study. Therefore,
results were examined using narrative synthesis. To
bring together key features of model development
and performance, results were presented according
to the prediction outcome of interest when appro-
priate and organized as follows: study setting
and population, predictor variables considered
and included in final models, prediction out-
comes, and model development and perform-
ance. Discrimination, the model’s ability to
accurately distinguish between individuals who expe-
rience the event of interest and those who do not,
was used to assess predictive performance and
reported using concordance (c) statistics, or area
under the curve (AUC) with 95% confidence inter-
vals when available.36 A c statistic of 0.5 indicates no
discriminative ability, akin to random chance.
Optimizing predictive accuracy and discriminative
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ability is crucial for real-world application, instil-
ling confidence in the model’s ability to inform
clinical decision making. The performance of pre-
dictive models carries significant clinical implica-
tions for patients, care clinicians, and health
system resources.36 Instead of c-statistics or AUC
measures, sensitivity, specificity, negative predic-
tive value, and positive predictive value were
reported when necessary.

Quality Appraisal and Risk of Bias Assessment

The quality and risk of bias (ROB) of individual stud-
ies were assessed using the Prediction Model Risk of
Bias Assessment Tool (PROBAST).37 Each study was
independently evaluated (R.J., T.C.) using the pro-
vided signaling questions and subsequently 7afforded
a score of “high,” “low,” or “unclear” risk of bias in
accordance with PROBAST scoring guidelines.

Results
The electronic databases search strategy retrieved
9456 studies. Of these, 4967 studies were screened

by title and abstract, resulting in 164 being selected
for full-text review. The final review included 31
studies which met inclusion criteria (Figure 1).
Overall, of the analyzed risk prediction models, 16
(44.4%) aimed to identify individuals at risk of hos-
pitalization, 7 (19.4%) focused on the risk of ED
visits, and 13 (36.1%) on the risk of mortality.
Although a subset of these models focused on spe-
cific patient populations, such as those with chronic
kidney disease or HIV-positive patients admitted to
hospital, the majority were developed in an adult
general practice or community hospital population.

Study Characteristics

Within the 31 included studies, most (n ¼ 18,
58.1%) reported on models developed using data
from the United States.38–55 The remainder of the
studies were from the United Kingdom (n ¼ 7,
22.6%)56–62, Canada,63 Ireland,64 and Australia65

(n ¼ 1, 3.2% each), and Israel (n ¼ 2, 6.5%)66,67,
whereas 1 study utilized data from health centers
across multiple countries.68 Among the 31 included
studies, 5 studies utilized unique models to address

Figure 1. PRISMA flow diagram. Abbreviation: PRISMA, Preferred Reporting Items for Systematic Reviews and

Meta-Analyses.
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more than 1 outcome, creating a total of 36 prediction
models. Sixteen models (44.4%) focused on the pre-
diction of hospitalization; of these, 5 focused on the
risk of hospital readmission.44,46,47,66,67 Thirteen mod-
els (36.1%) were developed to predict mortality,
including 3 which specifically examined the outcome
of patient suicide mortality,49,51 and 1 risk of opioid
overdose.50 Furthermore, 7 models (19.4%) assessed
the risk of emergency department visits.38–42,63,65 A
majority of studies (n ¼ 30, 96.7%) implemented a
retrospective cohort design, 2 of which coupled this
with prospective cohort validation, and 1 study exclu-
sively utilized a prospective cohort design.28

Of the total studies included in this review, 23
(74.2%) utilized electronic medical record data in
combination with other large sources of data, includ-
ing health care administrative data (n ¼ 7) death
repositories (n ¼ 7) and population demographics
data (such as census data) (n ¼ 8). In addition to pri-
mary care medical record data, 6 (19.4%) studies
included in this review utilized data linkages to cap-
ture hospital and health service use, but more com-
monly, this data were often stored in tandem with
primary care data (n ¼ 25, 80.6%). Of the 25 studies
which developed models using a single source of
EMR data, more than half (n ¼ 13) used data housed
within institutional or national health care reposito-
ries. The total sample size in each study ranged from
607 patients to >4.6 million patients. A complete
overview of study characteristics is presented in
Table 1.

Model Characteristics

Several of the studies evaluated the predictive per-
formance of models across a number of outcomes
(n ¼ 8), populations (n ¼ 4), prediction windows
(n ¼ 4), or across a number of prediction meth-
ods (n ¼ 3) and variable subsets (n ¼ 8). The most
frequently used statistical analysis method was logis-
tic regression, which was used in 17 studies (54.8%).
Of the total, 13 studies (41.9%) developed predictive
models using artificial intelligence methods. Most
validated models internally (n ¼ 20, 64.5%) or
used a combination of both internal and external
validation (n ¼ 7, 22.6%). Most commonly, meth-
ods of internal validation used a split sample
approach (n ¼ 16, 51.6%) or the more compre-
hensive technique of cross-validation (n ¼ 6,
19.4%), which assesses model performance across
multiple subsets of data.

Four studies28,39,45,56 (12.9%) discussed the
clinical implementation of prediction models or
developed models for real-time utilization in clin-
ical practice and to inform clinical decision mak-
ing. More specifically, Morawski, Dvorkis, &
Monsen (2020) developed a model that utilizes a
data warehouse, which couples clinical EMR data
with 12-month administrative claims and updates
data on a weekly basis to predict real-time risk of
hospitalization for primary care patients. Similarly,
Hu et al., (2015), developed a model to assess patient
risk of ED visits and integrated this tool into an ac-
cessible, web-based dashboard used to inform care.
Although prospective cohort studies explore predic-
tion performance in real-time settings, Wallace et al.,
(2016) specifically note model characteristics which
have advantages and lend to clinical utility, such as
high-risk stratification. Lastly, the Devon Predictive
Model identifies clinicians of patients within the top
5% highest risk of hospital admission to inform case
management care.69

Inclusion and Use of Prediction Variables

Table 2 presents the 20 most common variables
included in final models across all outcomes.
Within the 31 studies, 51 various sets of predictive
features were examined. Prediction features were
classified into 9 broad categories: sociodemographic
variables, patient health profile, medical history,
medication use, clinical findings, procedure his-
tory, health service utilization, social supports,
and others.

Across all prediction outcomes, age (n ¼ 45,
88%), specific medical diagnoses (n ¼ 43, 84%),
and sex (n ¼ 40, 78%) were the top 3 variables
most frequently included in final models. Twenty-
nine (57%) models included medication use, a vari-
able often captured by a count of individual pre-
scriptions, medication classifications, or drug classes.
Prior health service utilization, often examined
within the past year, is a key variable commonly
included in final prediction models. This included
both prior hospital admissions and emergency
department visits. Less frequently, the number of
inpatient bed days was included as a final predic-
tion variable. Across all outcomes, medication use
was frequently included in final prediction models
(ED visits, n ¼ 4, 50%; hospitalizations, n ¼ 13,
62%; mortality, n ¼ 12, 75%). Clinical laboratory
results, such as levels of bilirubin and creatinine,
were included in 22 final models (43%), and
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several models considered and included sociodemo-
graphic variables such as race/ethnicity, socioeconomic
status, access to care, marital status, and insurance
payer.

Of the 31 included studies, 6 studies (19.4%) did
not report the candidate predictor variables eval-
uated, and 7 studies (22.6%) did not report the rela-
tive predictive strength of individual variables. Of
the studies which presented variable importance,
notable overlap was found between variables fre-
quently included in final models and those which
held significant predictive value.

More specifically, age and specific medical diagno-
ses were identified as strong predictive contributors
across all predictive outcomes, and less commonly,
prior hospitalizations and laboratory results also
demonstrated significant predictive power.

Two studies included free-text medical record
data; 1 study used both structured and unstructured
data fields for prediction,46 whereas another solely
processed free-text data and fit models using indi-
vidual and strings of text.63

Predictive Accuracy of Included Studies

For studies with more than 1 prediction model,
those with the highest c-statistic were considered
the preferred/selected model. Table 1 presents an
overview of model development and performance
for each predictive outcome. Overall, almost all
studies (n ¼ 30, 97%) reported discrimination using
c-statistics, of which the selected models ranged
from 0.57 to 0.95 after validation. Of the best-per-
forming models, the average c-statistics for ED vis-
its, hospitalizations, and mortality were 0.73, 0.77,
and 0.81, respectively. Twenty-four (77%) studies
presented at least 1 measure of sensitivity, specific-
ity, positive predictive value, or negative predictive
value, often at various levels of predicted risk or
probability thresholds.

Methodological Quality of Included Studies

Overall, the methodological quality of the included
studies was poor. Although most studies included
sufficient information on participants, many did not
provide sufficient details on their specific analyses
(Table 3). Calibration assesses the alignment
between the probabilities predicted by the model
and the actual observed probabilities of outcomes.
In a well-calibrated model, predicted probabilities
match the true probabilities of events, indicating
that the model’s predictions are not systematicallyT
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too high or too low. Less than half of the studies
reported calibration; the most frequently used
methods of assessing calibration were calibration
curve (n ¼ 7), Hosmer-Lemeshow test (n ¼ 4), less
frequently, reported slope or raw predicted and
observed values. Of these, 12 studies reported that

models were well calibrated or stated that results
indicated good calibration.

Discussion
The aims of this systematic review were threefold:
1) to examine candidate predictors which contribute

Table 2. Top 20 Predictor Variables Included and Considered in Models Predicting Emergency Department

Visits, Hospitalizations, and Mortality

Study Outcomes

Emergency
Department Visits
(Model n ¼ 8)

Hospital
Admissions

(Model n ¼ 27)
Mortality

(Model n ¼ 16)

Number of models which included or excluded the respective variables in final models

Predictor Variables
Included in Final

Model
Excluded after
Evaluation

Included in
Final Model

Excluded after
Evaluation

Included in
Final Model

Excluded after
Evaluation

Sociodemographic
Age 7 (87.5%) 0 (0.0%) 23 (85.2%) 3 (11.1%) 15 (93.8%) 1 (6.25%)
Sex 5 (62.5%) 2 (25.0%) 22 (81.5%) 4 (14.8%) 13 (81.3%) 2 (12.5%)
Race/Ethnicity 3 (37.5%) 1 (12.5%) 15 (55.6%) 3 (11.1%) 6 (37.5%) 5 (31.3%)
Socioeconomic
Status*

2 (25.0%) 1 (12.5%) 11 (40.7%) 5 (18.5%) 2 (12.5%) 6 (37.5%)

Marital Status 1 (12.5%) 0 (0.0%) 9 (33.3%) 1 (3.7%) 3 (18.8%) 2 (12.5%)
Insurance Payer 3 (37.5%) 0 (0.0%) 11 (40.7%) 1 (3.7%) 4 (25.0%) 2 (12.5%)
Access to Care* 0 (0.0%) 0 (0.0%) 9 (33.3%) 1 (3.7%) 0 (0.0%) 2 (12.5%)

Health Profile
Smoking Status 1 (12.5%) 0 (0.0%) 7 (25.9%) 2 (7.4%) 3 (18.8%) 1 (6.3%)
BMI, Weight 2 (25.0%) 0 (0.0%) 8 (29.6%) 2 (7.4%) 5 (31.3%) 1 (6.3%)

Medical History
Medical Diagnoses 8 (100%) 0 (0.0%) 21 (77.8%) 0 (0.0%) 14 (87.5%) 1 (6.3%)
Mental Illness 1 (12.5%) 0 (0.0%) 11 (40.7%) 2 (7.4%) 8 (50.0%) 2 (12.5%)
Substance Use 0 (0.0%) 0 (0.0%) 4 (14.8%) 3 (11.1%) 5 (31.3%) 4 (25.0%)
Medication Use 4 (50.0%) 0 (0.0%) 13 (48.1%) 1 (3.7%) 12 (75.0%) 2 (12.5%)

Clinical Findings
Laboratory Tests 4 (50.0%) 0 (0.0%) 11 (40.7%) 0 (0.0%) 5 (31.3%) 0 (0.0%)
Laboratory Results 3 (37.5%) 0 (0.0%) 10 (37.0%) 0 (0.0%) 9 (56.3%) 0 (0.0%)
Vital Signs 1 (12.5%) 0 (0.0%) 8 (29.6%) 1 (3.7%) 4 (25.0%) 2 (12.5%)
Procedure History* 2 (25.0%) 1 (12.5%) 6 (22.2%) 1 (3.7%) 7 (43.8%) 1 (6.3%)

Health Care
Utilization
Prior Emergency
Department Visits

4 (50.0%) 0 (0.0%) 18 (66.7%) 1 (3.7%) 7 (43.8%) 3 (18.8%)

Prior Inpatient
Admissions

4 (50.0%) 0 (0.0%) 20 (74.1%) 1 (3.7%) 11 (68.8%) 1 (6.3%)

Emergency Admissions 0 (0.0%) 0 (0.0%) 12 (44.4%) 0 (0.0%) 4 (25.0%) 0 (0.0%)
Non-Urgent
Admissions

0 (0.0%) 0 (0.0%) 4 (14.8%) 2 (7.4%) 4 (25.0%) 1 (6.3%)

No. of Inpatient Bed
Days

4 (50.0%) 1 (12.5%) 8 (29.6%) 1 (3.7%) 2 (12.5%) 2 (12.5%)

Primary Care Visits 2 (25.0%) 0 (0.0%) 11 (40.7%) 4 (14.8%) 3 (18.8%) 6 (37.5%)
Outpatient Visits 4 (50.0%) 0 (0.0%) 6 (22.2%) 0 (0.0%) 2 (12.5%) 0 (0.0%)

*Variable inclusion examples: Socioeconomic Status: neighborhood income, individual income, deprivation index, zip code proxy
measure; Access to Care: Health Region, proximity to health center, access to family doctor; Procedure History: surgical procedures,
cardiovascular procedures.
Abbreviation: BMI, Body mass index.
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to high-performing prediction models; 2) describe
model performance; and 3) assess model suitability
to contribute to clinical care and decision making.
This systematic review included 31 studies with 36
unique prediction models which process primary
care electronic medical record data. Sixteen
(44.4%) of the models aimed to identify individ-
uals at risk of hospitalization, 7 (19.4%) focused
on the risk of ED visits, and 13 (36.1%) on the
risk of mortality. Although a number of studies
focused on specific populations such as patients
with chronic kidney disease or HIV-positive
patients admitted to hospital, most risk predic-
tion models were developed in an adult general

practice or community hospital population. Of
the best-performing models within each study,
more than 85% of models demonstrated adequate or
good prediction accuracy. Across all prediction
outcomes, models which showed poor predictive
accuracy were often developed and validated
using smaller sample sizes.

This review identified numerous variables widely
found to be important predictors of emergency
department visits, hospitalizations, and mortality,
including age, prior health care utilization, medical
diagnoses, and sex. In contrast to the current study,
functional status, and activities of daily living,70 as
well as measures of multimorbidity and disease

Table 3. Methodological Quality Assessment of Included Prediction Models following the Prediction Model Risk

of Bias Assessment Tool (PROBAST) Guidelines

Study Participants Predictors Outcome Analysis Overall

Frost DW, et al., 2017 2 2 2 ? 2

Howell P, & Elkin PL., 2019 2 ? ? 2 ?
Pearce et al., 2019 2 1 2 1 1

Hu Z, et al., 2015 2 2 2 2 2

Hao et al., 2014 1 2 2 1 1

Bhavsar et al., 2018 2 2 ? 1 1

Crane et al., 2010 2 2 1 1 1

Rahimian et al., 2018 2 2 2 2 2

Gao et al., 2014 2 ? 1 ? 1

Perkins et at., 2013 2 2 1 1 1

Morawski et al., 2020 2 1 2 1 1

Shadmi et al., 2015 2 ? 1 1 1

Brisimi et al., 2018 2 1 1 ? 1

Wallace et al., 2016 1 2 1 1 1

Chenore et al., 2013 2 2 2 1 1

Donnan et al., 2008 2 2 2 1 1

Watson et al., 2011 2 2 2 1 2

Hippisley-Cox et al., 2013 2 2 2 2 2

Nijhawan et al., 2012 2 1 2 1 1

Zeltzer et al., 2019 2 ? 2 1 1

Wang et al., 2013 2 2 2 1 1

Simon et al., 2018 2 1 2 1 1

Glanz et al., 2018 2 2 2 ? 1

DelPozo-Banos et al., 2018 2 2 2 1 1

Hippisley-Cox, 2017 2 2 2 2 2

Barak-Corren et al., 2017 2 2 2 1 1

Bloom et al., 2019 2 2 2 2 2

Jung et al., 2019 2 2 2 1 1

Mathias et al., 2013 1 2 2 ? 1

Tierney et al., 1997 2 ? 2 1 1

O’Mahony et al., 2014 2 1 2 1 1

Note: ROB, risk of bias.
� indicates low ROB; 1 indicates high ROB; and ? indicates unclear ROB.
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severity,71 were common and significant predictors
identified in other reviews of prediction models.
This finding is noteworthy given the research
which highlights the association between these vari-
ables and the outcomes of interest. For example,
disease severity was found to have a significant asso-
ciation with emergency department use,72 and the
development of the well-known LACE index found
Charlson Comorbidity score to be 1 of 4 variables
independently associated with mortality or 30-day
hospital readmission.73 This could point toward a
paucity of such patient information routinely col-
lected and/or systematically stored within primary
care EMR data.

Further, a growing amount of literature has sup-
ported the feasibility and benefits of processing
EMR free-text and clinical notes for predictive
modeling.74 However, despite the amount of rich
medical record data available in unstructured fields,
only 2 studies46,63 included in the current review
utilized free-text data for prediction.75,76 The ab-
sence of unstructured EMR data in prediction mod-
els may indicate a missed opportunity to process all
available data in an effort to expand and improve
predictive models within PHC.

Consistent with previous research,77,8 more
than half of the studies included at least 1 mea-
sure of patient sociodemographic data in final
prediction models, including those which dem-
onstrated high predictive performance. As pri-
mary care EMR data facilitates the use of
routinely collected patient information valuable
for prediction, this finding may reflect the
increasing recognition of sociodemographic vari-
ables, such as socioeconomic status, as important
patient data to be systematically collected across
health systems.78

Previous research has explored the prediction
of emergency department visits, hospitalization,
or mortality, which process broad sources of
data, including administrative, and self-report
and survey data in addition to EMR data.
Overall, the distribution of predictive ability
reported in previous literature is consistent with
that found across outcomes in the current review.
A number of reviews have focused on the predic-
tion of hospitalization and have reported c-statis-
tics ranging from 0.60 to 0.83.,71 Furthermore, 2
reviews exploring the accuracy of mortality pre-
diction tools reported similar discriminative abil-
ity, with c-statistics ranging from 0.56 to 0.85.79

Although a portion of these models demonstrate
adequate predictive accuracy, research highlights
the importance of harnessing and building on ro-
bust model development and evaluation features,
particularly due to the clinical implications of
deficits in model performance.80

Many of the studies included in this review dem-
onstrated poor reporting of predictive methodology
and analyses. This is a common critique across mul-
tiple systematic reviews, which have also emphasized
the need for improved reporting, external validation,
and approaches to mitigate bias and the appropriate
handling of missing data.79,81 Thorough reporting of
methods and results is particularly important for
reproducibility, given the increasing amount of new
models emerging in the field and the increasing
potential for uptake of these models in clinical
practice. Future research should adhere to the
Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis
(TRIPOD)82 statement to report the development
and validation of predictive models. Only 4 studies
discussed or considered clinical implementation in
the study/model design. This is particularly impor-
tant as there are many barriers to translation from a
model on article to an effective predictive tool in
clinical practice.

Strengths and Limitations

There are several strengths of the current review.
There is a lack of systematic reviews which examine
the use of primary care electronic medical record
data in the prediction of emergency department vis-
its, hospitalizations, and mortality. This review
helped address critical gaps in the literature regard-
ing the potential of primary care EMR data.
Further, by bringing together a number of impor-
tant prediction outcomes, this review provided con-
nections between outcomes, and a comparison of
insights. In addition, the use of a comprehensive
search strategy has contributed to a robust, and
extensive review spanning multiple countries and
populations. However, there are limitations. First,
the exclusion of models that predict multiple end-
point outcomes, such as models which predict hospi-
talization or mortality, may inadvertently overlook
valuable insights that could enrich the existing litera-
ture. Second, the current search included only
English studies, which may limit the scope of the
available evidence. Lastly, although the findings in
this review provide a comprehensive overview of the
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available research, inconsistent reporting of predic-
tion model development and analysis may limit the
ability to draw conclusions from findings presented
here.

Conclusion
This review identified 31 studies which apply pre-
diction methods to primary health care electronic
medical record data to predict unplanned ED visits,
hospital admissions, and mortality. Although dem-
onstrating variable predictive performance, many
models share commonalities in predictive variables
of importance. Future research can build on these
findings to develop and evaluate algorithms used to
predict health service use, using EMR primary care
EMR data. Such algorithms could be integrated
into the workflow of primary care clinicians and
clinics. For example, teams could set aside time at
the beginning of the week to review a list of patients
identified at high-risk, and identify actions (ie, out-
reach, booking a visit, organizing tests). Over time,
such a system could be trained on data on the action
taken (or lack of action) and perform better over
time. Despite more work required to improve the
quality and reporting of such models, the use of pri-
mary care EMR data for use in predictive analytics
holds promise.

We are grateful to Melissa Perri, Rachelle Perron and Aakriti
Pyakurel for assistance with reviewing the literature, and Robert
Smith for input on this study. We appreciate helpful comments
from Tyler Williamson and Jeremy Petch.

To see this article online, please go to: http://jabfm.org/content/
37/4/583.full.
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Appendix A

Sample Search Strategy

Database: Ovid MEDLINE: Epub Ahead of Print, In-Process & Other Non-Indexed Cita�ons, 
Ovid MEDLINE® Daily and Ovid MEDLINE® <1946-Present>

Search Strategy:
--------------------------------------------------------------------------------
1     Primary Health Care/ (70433)
2     Comprehensive Health Care/ (6432)
3     exp General Prac�ce/ (72688)
4     Community Health Centers/ (6765)
5     Community Health Services/ (30311)
6     Child Health Services/ (19792)
7     Community Mental Health Services/ (17984)
8     exp Maternal Health Services/ (44875)
9     exp Community Mental Health Centers/ (3143)
10     Maternal-Child Health Centers/ (2292)
11     Physicians, Family/ (15929)
12     General Prac��oners/ (6632)
13     Physicians, Primary Care/ (2796)
14     Pediatricians/ (499)
15     pediatrics/ or neonatology/ or perinatology/ (54422)
16     Ambulatory Care Facili�es/ (17443)
17     Outpa�ent Clinics, Hospital/ (15342)
18     Outpa�ents/ (14149)
19     Preven�ve Medicine/ (11355)
20     primary care.tw,kf. (103761)
21     primary healthcare.tw,kf. (4884)
22     primary health care.tw,kf. (24402)
23     Family prac�ce*.tw,kf. (8313)
24     general prac�ce*.tw,kf. (40180)
25     family medicine.tw,kf. (9656)
26     general prac��oner*.tw,kf. (46993)
27     family physician*.tw,kf. (13841)
28     family doctor*.tw,kf. (4415)
29     Community Health Centre*.tw,kf. (809)
30     Community Health Center*.tw,kf. (2751)
31     Community Healthcare.tw,kf. (615)
32     Community Health Care.tw,kf. (1067)
33     Community Health service*.tw,kf. (1600)
34     ((outpa�ent* or ambulatory or community) adj4 (clinic or clinics or healthcare or health 
care or centre* or centers)).tw,kf. (60834)
35     pa�ent-centered medical home*.tw,kf. (1545)
36     pa�ent-centred medical home*.tw,kf. (34)
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37     Family Health Team*.tw,kf. (325)
38     or/1-37 (510304)
39     exp Medical Records Systems, Computerized/ (36267)
40     medical record linkage/ (4476)
41     Databases, Factual/ (69069)
42     Datasets as Topic/ (2472)
43     exp Medical Informa�cs/ (436809)
44     electronic medical record*.tw,kf. (13195)
45     electronic health record*.tw,kf. (12183)
46     computerized medical record*.tw,kf. (671)
47     computerised medical record*.tw,kf. (114)
48     computerized health record*.tw,kf. (21)
49     computerised health record*.tw,kf. (6)
50     automated medical record*.tw,kf. (90)
51     automated health record*.tw,kf. (2)
52     health informa�on technolog*.tw,kf. (2993)
53     administra�ve data.tw,kf. (7354)
54     medical informa�cs.tw,kf. (2750)
55     or/39-54 (469117)
56     Data Interpreta�on, Sta�s�cal/ (54490)
57     exp Ar�ficial Intelligence/ (80268)
58     exp Data Mining/ (7134)
59     big data/ (64)
60     deep learning/ (78)
61     Data Science/ (10)
62     Data Analysis/ (89360)
63     Pa�ern Recogni�on, Automated/ (24171)
64     ar�ficial intelligence.tw,kf. (3790)
65    Machine learning.tw,kf. (17867)
66     neural network*.tw,kf. (37993)
67     data mining.tw,kf. (8120)
68     data science.tw,kf. (535)
69     data sciences.tw,kf. (77)
70     Data Analy�c.tw,kf. (432)
71     Data Analy�cs.tw,kf. (688)
72     text mining.tw,kf. (2092)
73     deep learning.tw,kf. (3324)
74     supervised learning.tw,kf. (1966)
75     unsupervised learning.tw,kf. (990)
76     big data.tw,kf. (4736)
77     deep architecture*.tw,kf. (101)
78     pa�ern recogni�on.tw,kf. (15417)
79     exp risk/ (1104210)
80     Forecas�ng/ (81083)
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81     Prognosis/ (462954)
82     Probability/ (54316)
83     algorithms/ (232345)
84     models, sta�s�cal/ (85771)
85     exp Regression Analysis/ (394966)
86     predict*.tw,kf. (1400959)
87     prognos�c*.tw,kf. (268647)
88     Probabili*.tw,kf. (200461)
89     forecast*.tw,kf. (15240)
90     (risk or risks).tw,kf. (1963244)
91     algorithm*.tw,kf. (218625)
92     sta�s�cal model*.tw,kf. (14542)
93     regression.tw,kf. (639902)
94     or/56-93 (4717078)
95     hospitaliza�on/ or pa�ent admission/ or pa�ent readmission/ (128838)
96     admission*.tw,kf. (194751)
97     readmission*.tw,kf. (22237)
98     re-admission*.tw,kf. (1774)
99     hospital visits.tw,kf. (1455)
100   hospitaliza�on*.tw,kf. (125145)
101   hospitalisa�on*.tw,kf. (15565)
102     Emergency Service, Hospital/ (60724)
103     (emergency adj4 (visit or visits or department* or admission* or service*)).tw,kf. 
(102397)
104   Emergency Treatment/ (10170)
105    death/ or death, sudden/ (28231)
106    mortality/ or hospital mortality/ or survival rate/ (228682)
107     Survival/ (4550)
108     survival analysis/ (124690)
109     (death or deaths or died or survival or mortality).tw,kf. (2021652)
110     or/95-109 (2443144)
111     38 and 55 and 94 and 110 (2056)
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Appendix B

Systematic Review Data Extraction Fields, Guided by the CHARMS Checklist

Study 
Informa�on

Study Reference Number 

Se�ng and 
par�cipants 
(see CHARMS p. 
4-5)

Country

Primary care se�ng (ex. outpa�ent cardiology or general prac�ce)

Par�cipant descrip�on (ex. pa�ents with cys�c fibrosis or all pa�ents of 
included general prac�ces)
Interven�on, if any (please enter 'NA' if no ac�on/interven�on)

Success of interven�on (please enter 'NA' if no ac�on/interven�on)

Data sources 
(see CHARMS p. 
3-5)

Study design (i.e., Retrospec�ve or prospec�ve, nested case-control or 
cohort)
Study objec�ve

Data start date (month/year)

Data end date (month/year)

EMR developer

EMR Version

Other sources of data (i.e., Insurance claims, administra�ve database, 

Outcomes 
(see CHARMS p. 
4, p.5-6)

Outcomes predicted

Defini�on and method of measurement of outcomes (ex. single or combined 
endpoints; all-cause mortality vs. mortality due to myocardial infarc�on) 
Was the same outcome defini�on and measurement method used for all 
pa�ents? (Y/N)

Candidate 
predictors 
(see CHARMS p. 
4, p.6-7)

Number and type of predictors (ex. demographics, pa�ent history, etc.)

Defini�on and method for measurement of candidate predictors (ex. 
diabetes can be measured by oral glucose tolerance test, HbA1c 
measurement, fas�ng plasma glucose, or self-report) 
Were predictors assessed blinded for outcome, and for each other? (in the 
case where studies examined the added predic�ve u�lity of certain variables)
Handling of predictors in model development (ex. con�nuous, linear, non-
linear transforma�ons or categorized)

Sample size 
(see CHARMS p. 
4, p. 7)

Number of par�cipants and number of outcomes/events

Number of outcomes/events in rela�on to the number of candidate 
predictors (Events Per Variable)
Number of par�cipants with any missing value

Number of par�cipants with missing data for each predictor
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Missing data 
(see CHARMS p. 
4, p. 7)

Handling of missing data (ex. complete-case analysis, imputa�on, or other 
methods)

Model 
development 
(see CHARMS p. 
4 and p.7-8)

Modelling methods used (ex. logis�c regression, survival, neural networks, 
machine learning techniques)
AI used? (Y/N)

Modelling assump�ons made

Method for selec�on of predictors for inclusion in mul�variable modelling 

Method for selec�on of predictors during mul�variable modelling 

Shrinkage of predictor weights or regression coefficients

Results, 
including model 
performance 
and evalua�on 
(see CHARMS p. 
4 and p.8-9)

Variables included in best final models (ex. basic, extended, simplified) 
presented, including predictor weights or regression coefficients
Calibra�on (calibra�on plot, calibra�on slope, Hosmer-Lemeshow test) 
AND
Discrimina�on (C-sta�s�c, D-sta�s�c, log-rank) measures with confidence 
intervals
Sensi�vity (please enter 'NR' if not reported)

Specificity (please enter 'NR' if not reported)

Predic�ve values (please enter 'NR' if not reported)

F scores (please enter 'NR' if not reported)

Receiver Opera�ng Characteris�c (ROC) (please enter 'NR' if not reported)

Area Under ROC (AUC) (please enter 'NR' if not reported)

Method used for tes�ng model performance: development dataset only 
(random split of data, resampling methods, ex. bootstrap or cross-valida�on, 
none)
OR
separate external valida�on (ex. temporal, geographical, different se�ng, 
different inves�gators)
Comparison of the distribu�on of predictors (including missing data) for 
development and valida�on datasets)
In case of poor valida�on, whether model was adjusted or updated (e.g. 
intercept recalibrated, predictor effects adjusted, or new predictors added) 
Any alterna�ve presenta�on of the final predic�on models, e.g. sum score, 
nomogram, score chart, predic�ons for specific risk subgroups, with 
performance metrics)

Interpreta�on 
and discussion

Interpreta�on of presented models (confirmatory versus exploratory)

Comparison with other studies, discussion of generalizability, strengths, and 
limita�ons

Abbreviations:  CHARMS checklist, CHecklist for critical Appraisal and data 

extraction for systematic Reviews of prediction Modelling Studies.
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