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Primary care physicians are likely both excited and apprehensive at the prospects for artificial intelli-
gence (AI) and machine learning (ML). Complexity science may provide insight into which AI/ML appli-
cations will most likely affect primary care in the future. AI/ML has successfully diagnosed some
diseases from digital images, helped with administrative tasks such as writing notes in the electronic
record by converting voice to text, and organized information from multiple sources within a health
care system. AI/ML has less successfully recommended treatments for patients with complicated single
diseases such as cancer; or improved diagnosing, patient shared decision making, and treating patients
with multiple comorbidities and social determinant challenges. AI/ML has magnified disparities in
health equity, and almost nothing is known of the effect of AI/ML on primary care physician-patient
relationships. An intervention in Victoria, Australia showed promise where an AI/ML tool was used only
as an adjunct to complex medical decision making. Putting these findings in a complex adaptive system
framework, AI/ML tools will likely work when its tasks are limited in scope, have clean data that are
mostly linear and deterministic, and fit well into existing workflows. AI/ML has rarely improved com-
prehensive care, especially in primary care settings, where data have a significant number of errors
and inconsistencies. Primary care should be intimately involved in AI/ML development, and its tools
carefully tested before implementation; and unlike electronic health records, not just assumed that AI/
ML tools will improve primary care work life, quality, safety, and person-centered clinical decision
making. ( J Am Board Fam Med 2024;37:332–345.)
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Background
Artificial intelligence (AI), and its branch machine
learning (ML), have been touted as among the “10

big advances that will improve life, transform com-
puting and maybe even save the planet.”1 (Table 1)
Other less dramatic AI/ML supporters say that it
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will facilitate new opportunities for doctor-
patient connection,2 and if implemented wisely,
AI can free up physicians’ cognitive and emo-
tional space for their patients, even helping them
to become better at being human.”3 Some pri-
mary care clinicians are excited at the possibility
of AI/ML and envision many potential uses,3–5

whereas others are more apprehensive, believing
that the doctor-patient relationship is founded
on communication and empathy,6 and that AI/
ML cannot duplicate this.7

The recent hype over nonhealthcare AI/ML
applications demonstrates that the potential
benefits and harms of AI/ML are on many peo-
ples’ minds. Autonomous vehicles have had
some successes, but also failures leading to fatal
accidents that have prompted regulatory scru-
tiny.8 The large language model ChatGPT dem-
onstrated success at passing standardized legal
exams, but when tasked to write legal briefs, it
wrote about nonexisting case law precedents.9 In
health care, ChatGPT has successfully answered
medical license test questions,10 but ChatGPT
has been found to produce errors in both stating
facts and synthesizing data from the medical

literature,11 and there is now evidence emerging
that the mass use of ChatGPT actually worsens
its accuracy and reliability.12

Complexity science may provide some insight
into which predictions about the future of AI/ML
in primary care are full of reason or full of hype
(Table 2). Briefly, complexity arises from the inter-
connectedness and interdependence of multiple
agents in a particular context (a hospital setting vs a
clinic vs the community, eg,).13 The dynamics
between these agents results in feedback loops that
alter the nature and behavior of its agents, that is,
they adapt to changing circumstances resulting in
emergent behaviors, which can be expected, but not
predicted.14,15 Complex systems consist of a large
number of elements that in themselves can be sim-
ple. Even if specific elements only interact with a
few others, the effects of these interactions are
propagated throughout the system, and these inter-
actions are nonlinear. An everyday example could
be a shortage of toilet article “caused” by the
COVID-19 virus. Other aspects of complex adapt-
ive systems (CAS) are further explained in the
Appendix.

Primary care must manage many interconnected
and interdependent issues, and thus by definition is
complex. Unlike specialty care, there is a breadth of
undifferentiated patient presentations and irregular
timing of presentations to primary care and acute
services.16,17 Their clinic visits are more complex
than specialists’ visits.18 Primary care providers

Table 1. Overview of Artificial Intelligence and Deep Learning

What is Artificial Intelligence and Machine Learning?

� Artificial Intelligence (AI) is a discipline that studies systems that exhibit behaviors associated with human intelligence, whether
embodied solely in computer software, or as embedded software in a physical structure like a robot.

� Machine Learning (ML) is an automated approach to learning patterns from empirical data using training examples, usually large
databases, with the development of an ML algorithm that when applied to new examples improve prediction. ML is concerned
with identification of patterns in a wide range of data include quantitative databases such as diagnostic images or textual corpora
such as in medical records, and personal reporting or personal health records. The challenge that ML addresses is to identify
patterns of interest in data sets that encode extremely large numbers of factors and with vast numbers of cases from which
generalizations are to be formed. Conversely, it is problematic to generalize from relatively small numbers of known cases to
recognized patterns for new possibilities.

� Supervised versus Unsupervised Learning – It is common to distinguish supervised and unsupervised methods, even though the
label “unsupervised” is slightly misleading in that for any method to work, a machine-readable data set must be developed and
encoded by a human. However, where methods are explicitly supervised, this tends to mean that there is a designated target
feature and values within that feature such that training can be tuned to identify with greater levels of supervision. Error analysis
from initial training is fed back into the training process and the models can be progressively refined.

� Deep Learning – Deep learning is a subset of machine learning, which is essentially a neural network with three or more layers.
These neural networks attempt to simulate the behavior of the human brain—albeit far from matching its ability—allowing it to
“learn” from large amounts of data. Although a neural network with a single layer can still make approximate predictions,
additional hidden layers can help to optimize and refine for accuracy. Deep learning drives many AI applications and services
that improve automation, performing analytical and physical tasks without human intervention.
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have to navigate the greatest volume of patient care
information across all other health care entities
such as hospitals, nursing homes, lab and imaging
facilities, specialists, insurance companies, govern-
ment agencies, pharmacies, home health agencies,
and so on. AI/ML could help or harm managing
this information.

Supporters believe that AI/ML will revolutionize
primary care—improving risk prediction and inter-
vention, dispensing medical advice and triage,
improving clinic workflow, broadening diagnostic
capabilities, assisting in clinical decision making,
assisting in clerical work, and aiding population or
panel management including risk assessments, and
remote patient monitoring.3 However, primary
care AI/ML implementation research remains at a
very early stage of maturity,19 and as with many
technological advances before, there is no guaran-
tee that AI/ML will successfully transform care
delivery and/or care outcomes.

The purpose of this article is to discuss the
opportunities and challenges of AI/ML in primary
care, seen through the lens of CAS.

The Opportunities and Challenges of AI/ML
for Primary Care
Detection/Diagnosis of Single Diseases

Early examples of successful implementation of AI/
ML include analyzing data from images to diagnose
specific conditions. Examples include retinal scans to
diagnose diabetic retinopathy,20 data from mammo-
gram imaging to identify radiographic images sug-
gestive of breast cancer,21 using wearables to detect

atrial fibrillation,22 and using tele-dermatology with
AI/ML assistance to improve diagnostic accuracy for
skin lesions.23 AI/ML successes have been described
as less that of a certain diagnosis and more like a
good guess at what the answer might be,21 which
helps explain why the impact of AI/MLeven in a dig-
ital field such as diagnostic radiology has been only
modest so far.24 For primary care, AI/ML might
augment a physician’s knowledge and confidence to
diagnose rare diseases.25

However, even apparent successes of AI/ML for
diagnostic outcomes have been found to be nonsen-
sical when deeply explored post hoc. For example,
an AI tool for detecting melanomas in photographs
of skin lesions did so by recognizing that photo-
graphs with cancer were more likely to have small
rulers in the image.27 Judging AI/ML accuracy in
clinical diagnosis is particularly challenging outside
of well-structured case vignettes.28 Although AI/
ML-trained systems may aid the diagnostic process,
it cannot determine the final diagnosis, which
involves human interactions, judgments, and social
systems understandings that are beyond what com-
puters can model.29

Treat Specific Diseases

AI/ML also has the potential to inform decision
making by quickly synthesizing a wide variety of in-
formation from the medical literature or electronic
health record (EHR). It could also incorporate
patient pathways including hospital discharge sum-
maries, drug databases, drug-drug and drug-disease
interactions with the ability to analyze large
amounts of data and discover correlations that may

Table 2. Salient Features of Complex Adaptive Systems

Complexity Science

� Complex systems have hierarchies of power and control.
� They contain independent agents that interact with other agents are often resistant to top-down control.
� Agents interact with other agents that are above, equal to, or below their position in the hierarchy.
� Knowing the parts of a complex system does not equal understanding the system.
� There are non-linear relationships between efforts to change systems (usually from higher levels in the hierarchy) and the

amount of change that actually occurs in the lower levels.
o A complexity science concept that has moved into popular thought is the tipping point, or the notion that a small change can

spread from its own momentum across agents in a system without much external energy spent to drive the change.
� In more resilient complex adaptive systems, the top hierarchies provide information and resources to the lower levels. The

agents in the lower levels use these resources that make the most sense in their local environment.
� This top-down/bottom-up information and resource cycle results in emergent properties through a complex system that is

unpredictable.
� Complexity principles even apply to an individual human. The human “system” contains many hierarchies that interact from the

top-down and bottom-up at the same time. The impact of the external environment on health comes from stress activation, etc.,
at the lowest level. In clinic, we see the effects of heterogeneity of dynamic interactions within body systems at lower level, and
environment elements at the whole person higher levels.
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have been missed by researchers and health care
providers, enhancing patient-centered care.30 For
example, a hospital bedside AI/ML-based consulta-
tion service had only a limited effect on treatment
decisions in 10 out of 100 queries, mostly involving
unusual understudied patient presentations or rare
diseases.31

AI/ML was not successful at improving cancer
treatment, which may more closely reflect the com-
plexity of primary care. Studies concluded that IBM
Watson did not improve on the decisions of oncolo-
gists, and the project was abandoned.32,33 Attempts
involving diagnoses that require integrating clinical
findings, a crucial task in primary care, have not
achieved the same success as single disease efforts.34

AI/ML models based purely on historic data
would only learn the prescribing habits of physi-
cians in retrospect that may not represent an ideal
state in emerging practices.35 For example, compu-
terized decision support systems (CDSS) designed
with a high tolerance for risk favored algorithm
performance over patient safety, potentially exposing
patients to inappropriate medications.36 Determining
if AI/ML improves patient outcomes remains the
most important test, and currently there is scant evi-
dence of downstream benefit. AI/ML optimists
consider real world data such as pharmaceutical
postmarketing surveillance as a valid source of
evidence to connect treatments with outcomes.37

Skeptics believe AI/ML is no substitute for more
rigorous methodologies, which may include
randomized controlled trials or learning health
system approaches.38

Predict Future Health Events

AI/ML may provide new opportunities to con-
struct more acute predictions of disease risk, which
could inform smarter decision making algo-
rithms.39 Oak Street Health implemented an ML
approach that increased the number of patients
identified at high risk for hospitalization compared
with retrospective models, but not improve mor-
tality.40 ML may be particularly useful when deal-
ing with “wide data,” where the number of subjects
is greater than that of input variables. Other
observers believe most studies on ML-based pre-
diction models show poor methodological quality
and are at high risk for bias.41 Existing prediction
models that use large data sets and AI/ML can give
similar population level estimates of cardiovascular

disease, while giving vastly different answers for
individual patients.42

An explanation for this discrepancy is that ML
focuses on the strength of the correlation between
variables rather than the direction of causality,26

and ML may add little value to predictions of future
events compared with traditional methods. And
even if one assumes that AI/ML applications might
increase the predictive accuracy for future events, it
does not mean that there is an action available to
decrease the risk, which in turn raises important
ethical concerns.

Decrease Administrative Burden

AI/ML using voice recognition has been imple-
mented to listen to a physician-patient encounter
and document a preliminary note, or autochart-
ing.43 A tool called Suki was found in a demonstra-
tion project to reduce documentation time with this
technology by 72%,44 critical in an age where such
administrative burden has been clearly linked to
growing rates of reported US clinician burnout.45

An assessment of the performance of ChatGPT to
generate histories of present illness documentation
in medical notes found that it sometimes reported
information that was not present in the source dia-
log, an error called “hallucinating.”46 Other possi-
ble uses include optimizing coding for value-based
payments and automating aspects of previsit plan-
ning.3 However, a substantial proportion of patient
symptoms in primary care are vague, such that even
human scribes present in the room do not agree
how to document them.43 A possible distinction
between these disparate findings may be recording
and categorizing information (converting spoken
history and physical examination elements to a dic-
tated note) versus improving understanding. AI/
ML used to automate prior authorizations has also
been proposed.47

Expand Primary Care Capacity

Some AI/ML innovations aimed to extend the
work of the primary care team beyond the office
visit, the home visit, and even beyond telehealth.
Conversational agents using AI/ML improved
depression scores in small 2-week trial, a time
frame that is likely clinically irrelevant.48 A recent
randomized comparative effectiveness trial indi-
cated that AI/ML could allow many more patients
to be served effectively by CBT-CP programs
using the same number of therapists.49 Other
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examples of AI/ML used for single-issue primary
care tasks include mental health assessments dur-
ing telehealth calls,50 mental health support,51 and
weight management.52

AI/ML may help with remote monitoring, for
example, alerting patients and doctors when a contin-
uous glucose monitor stops functioning, or decreas-
ing false alarms in telemetry units.53 However,
algorithms that are applied repeatedly to track a
patient’s condition likely will trigger repeated false
alarms or information the clinician is already aware
of, which contributes to alarm fatigue.54

Data Issues—Signal, Noise, and Action
Data Accuracy

Some of the successes of AI/ML outside of health
care have been noteworthy, for example, the progres-
sion of AI to defeat humans in the games of checkers,
chess, then Go.55 These programs were trained on
tens of millions of previous games, where the input
data were essentially perfect. In contrast, “noisy” data
decreases classification accuracy and prediction results
in ML.56 In fact, the information that should be clas-
sified as signal versus noise is difficult to determine
even for highly focused questions in medicine, for
example, determining if heart rate variability derives
more from normal physiologic events (stress), normal
“abnormal” states (sinus bradycardia in a young ath-
lete), or disease (paroxysmal tachycardias).57

Noisy data are a challenge in all potential uses of
AI/ML, but will likely be an especially significant
barrier to the utility of ML in primary care, where
inaccurate data are already abundant, which erodes
accuracy of ML predictive models.58 In a detailed
investigation of EHR data fidelity, diagnostic codes
for hypoglycemia were found to have moderate
positive predictive value (69.2%) and moderate sen-
sitivity (83.9%).59 Accuracy rates of medical registry
data ranged from 67% to 100% and completeness
ranged from 30.7% to 100% in another study.60

Important drivers of EHR inaccuracies are copied
and pasted notes, a work pattern that is not likely to
change going forward.61 In addition, the timeliness
and accessibility of EHR data are challenging. Raw
data from an EHR must be cleaned and formatted
before use, but if this process is delayed, the models
cannot be applied in real time for patient care.62

Whether ML approaches can sort out which data
inconsistencies are errors, and which add useful in-
formation, remains unknown.

Actionable Data

AI/ML has been shown to predict risks of future
events in some cases. But merely providing the
probability of a particular outcome, such as read-
mission or mortality risk, is unlikely to change phy-
sician or patient behavior in most primary care
settings, as physicians incorporate their patient’s
unique context and preferences into their decision
making.63 Poor calibration might often be expected
with application of a model from one population to
another, which can lead to harmful decisions.63,64

Although modern imputation methods can mitigate
some bias due to missing information, these meth-
ods are less useful in EHR settings where it is not
possible to distinguish the true absence of a relevant
characteristic (such as a particular comorbidity)
from data incompleteness. Even if efforts are
undertaken to maximize calibration, patterns seen
in existing data sets should be considered as no
more than hypothesis generating, and will still
require classic hypothesis testing.65

A summary of the potential uses and features of
AI/ML applications for which primary care physi-
cians could be excited or apprehensive is provided
in Table 3.

New Approaches May Emerge Using AI/ML in Complex

Adaptive Systems

Complexity principles have been used to improve
health system outcomes with AI/ML at the
macro-level. Using hospital admissions and emer-
gency data, Monash Health in Victoria, Australia
developed an algorithm to predict patients who
were at high risk of readmissions within the next
12months. The algorithm had a positive predic-
tive value of 33%.66,67 Monash Health leveraged
the primary care teams’ preexisting relationships
with patients and initiated an outreach team of
medical, allied health and community health work-
ers (CHWs) to augment the care by primary care
physicians using an online system to predict deteri-
orating patient journeys. Nonclinicians made regu-
lar monitoring phone calls (≥ weekly) prompted by
a clinical algorithm that continually predicted
unmet needs and risk of deterioration or admission
based on the most recent phone calls. The intense
outreach effort using conversations aimed to address
unintended repeat investigations, loneliness, hospital
infection, and posthospital syndrome, aligned
with the goals of patients.68 Interventions the
clinical teams developed were not defined a priori,
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but emerged through dynamic feedback loops
between the interacting agents.

They reduced readmissions by 1.1 bed-day per
person per month, with a> 60% participation rate
in eligible patients.68 The physicians, wider teams,
and CHWs could continually update their inter-
ventions, which is a feature of a well-functioning
CAS. Clinical teams learned from their ongoing
interactions with patients and adjusted their recom-
mendations based on each patient’s personal journey.
The AI/ML software looked at individual call data,
records of all the calls and outcomes, and all patients
in the database. It improved CHWs’ prediction of an
event, that is, the likelihood that something would
happen before the next weekly call, by 80%.69

In this example, the primary care teams used AI/
ML to manage a large volume of data that would be
difficult and expensive for humans, but relied on
existing relationships and clinician judgment to
determine the best actions. The researchers con-
cluded that the algorithm determined only 10% to
20% of the success; the primary care team workflow
determined 80% to 90%.

Other Concerns with AI/ML
Health Equity

TheUSFood andDrugAdministration andothers re-
alize AI/MLhas inclusiveness problems andmay exac-
erbate outcome differences in vulnerable populations.

Table 3. Excited or Apprehensive—Likely Uses of Artificial Intelligence/Machine Learning from a Complexity

Perspective

Primary Care Function Excited/Less Complex Care Apprehensive/More Complex Care

AI/ML more likely to help Factors making AI/ML less likely to help

Diagnose � Improve physician confidence to
diagnose a patient concern likely
explained by one diagnosis.

� Possibly improve diagnosis of rare
diseases.

� More quickly sifting through and sizing
up evidence.
8 Possibly better than doing your own

Google or literature search.

8 More quickly and more focused
searches with less time taken from
actual patient care.

� Complex interaction of multiple
symptoms and possible diseases
including psychosocial and social
determinant effects that is too much for
the computer to manage.

� Actual diagnostic computer “nuts and
bolts” can be nonsensical.

� Diagnoses more accurate in AI/ML
demonstrations with well-structured
vignettes.

� AI/ML diagnoses not likely to include
contextual and relational factors.

Treat specific diseases � Better at judging the chances of what
treatment will work best for what
patient.

8 Helping the physician become a
better “odds-maker.”

8 Greater objectivity—more
evidentiary basis and less sense of
exposure

8 Readiness to take on complex work
that might otherwise have seemed
“beyond my bandwidth” when not
assisted by AI tools, especially for
rarer diseases.

� Noisy and inaccurate data in EHRs.
� May only add real value for rarer

diseases.
� AI not successful at improving cancer

treatment.
� Using historical treatment data may not

reflect newer approaches.
� Many treatment decisions are based on a

negotiation with the patient using
patient-shared decision making.

� Relationships of data elements in existing
databases (EHRs, billing data, and so on)
often non-linear with Pareto
distributions, which makes mathematical
predictions challenging.

Predict future health events � Identify patients at increased risk for
hospitalization.

� Predictions may not be actionable.
� Existing models may give similar

population estimates, but vary widely for
individuals.

� AI/ML predictions may not improve
upon existing tools.

Decrease administrative burden � Getting through all those letters and
forms with less burden.

� For U.S. physicians mostly, decrease
documentation time and burden.

� Patient symptoms in primary care are
often vague, and even human scribes do
not agree how to document them.

� Distinction between typing spoken
words onto a clinic note versus
increasing understanding.

Abbreviations: AI, artificial intelligence; ML, machine learning; EHR, electronic health record.
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There are many types of biases in machine learning.70

Many data sets lack diversity and completeness of data
by gender, race, ethnicity, geographic location, and
socioeconomic status.71,72 For example, AI/ML was
used to identify cancerous moles in whites, but not
blacks.73 In contrast, AI/ML has been shown to posi-
tively impact implicit racial bias in the prevention of
deep vein thrombosis.74 Human health care workers
certainly have biases too.

Datasets that reflect historic disparities in care
related to racism and privilege have been shown to
produce AI/ML results that retain these biases and
thereby perpetuate the structural disadvantages and
disparities.75 Users of AI/ML may not even recog-
nize the biases. Clinicians with a propensity to trust
suggestions from AI/ML support systems may dis-
count other relevant information, leading to so-
called automation complacency.76 To combat this,
fairness audits were used to reflect on AI/ML per-
formance in prompts for end-of-life care planning,
and found application performance differences by
race/ethnicity, for example, in Hispanic/Latino
males whose race was recorded as “other.”77 This
particular audit required 115 person-hours and did
not add clinically meaningful information due to
poor demographic data quality and lack of data
access. AI/ML was also largely unsuccessful at
incorporating social determinants of health indica-
tors into prospective risk adjustment for private in-
surance payments in the U.S improving the
predictive ratio by only 3%,78 though this perform-
ance may worsen over time as so-called latent biases
emerge with subsequent use of an AI/ML tool.79

It is beyond the scope of this commentary to
review other concerns about AI/ML such as pri-
vacy, data ownership and transferability, intellectual
property, cybersecurity, and medical liability for
the creators and owners of AI/ML tools.80 AI/ML
was recently challenged to “not just replicate
human thinking processes, but should aim to exceed
them,” a bar that is likely insurmountable for many
aspects of complex primary care.65

Discussion
Despite the emergence of intriguing Al/ML tools
such as ChatGPT, successful transformation of pri-
mary care using AI/ML is far from guaranteed.
Primary care should play a critical role in developing,
introducing, implementing, and monitoring AI/ML
tools, especially regarding common symptoms, acute

diseases, chronic diseases, and preventive services.81

To avoid making the same mistakes with AI/ML
implementation as happened with the forced EHR
implementation onto primary care without adequate
vetting, US policy makers should assume that AI/
ML products will only improve primary care if its
stakeholders are heavily involved in its development,
piloting, vetting, and wider implementation.

No tool can account for the inherent complexity
of primary care. It is not the existence of AI/ML
tools that are the potential problem, but the way
the tools are used that matters–are they ultimately
able to integrate the tacit domains required for
participatory, effective, and ethical decision mak-
ing? Do the potential cognitive and data-manage-
ment improvements of AI/ML add any value to
patient outcomes beyond the pre-existing deep rela-
tionships between primary care clinicians and their
patients?

Complexity science recognizes that primary care
decision making emerges from not only the doctor-
patient relationships and knowledge of confounding
factors for treating an individual patient such as
comorbidities, social determinant challenges, and
unique patient attitudes and beliefs, but also the
interrelated hierarchical layers and feedback loops
of health care systems.13 AI/ML approaches may
harm primary care by acting to minimize an under-
standing of these complexities, often by limiting the
number of features that it uses to develop its algo-
rithms.57 In fact, many potential AI/ML tools are
described as synthesizing information (EHR data
and billing data) from the front lines of the health
care system hierarchy and sending conclusions to
the macro administrative layers (analysts and
administrators), which is opposite that of a natural
and sustainable CAS.82 The series of interventions
in Victoria, Australia demonstrate a CAS-consistent
flow of information. AI/ML was used to collate a
large amount of data to identify patients who were
potentially about to “tip” into worse health states,
but the synthesized information was not sent to the
top levels of the system hierarchy, but rather to the
front-line clinicians. In addition, AI/ML was not
used to make medical decisions of how to respond
to the patients flagged as being at increased risk
for hospitalization. What made this AI/ML appli-
cation successful was not only the model itself
(which actually played a relatively small role), but
more importantly the way the model augmented
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existing relationships and human-driven processes
of care.

A key limitation of AI/ML lies in the fact that its
predictions arise from existing data. It cannot, at
least at this point in time, synthesize the multiple
perspectives of a health professional in the context
of the patient in front of them. Creating new data
upfront for unmet clinical needs and specific pur-
poses is time and resource expensive, but gives the
best chance of being useful in practice.

A deliberative patient-physician relationship is
important for healing, particularly for complex con-
ditions and when there is a high risk of adverse
effects, because individual patients’ preferences
differ.83 There are no algorithms for such situations,
which change depending on emotions, nonverbal
communication, values, personal preferences, pre-
vailing social circumstances, and many other factors.
For example, AI/ML will not likely reduce the
uncertainty inherent in making ethical decisions
about care at the end of life. AI/ML sceptics point
out that algorithms and prediction instruments,
ironically, exercise tyranny over the true freedom of
moral agency that we claim to be respecting in our
patients.84

Policy makers (and investors) should not just
assume that AI/ML tools can significantly improve
the complex person-centered work of primary care
physicians and their teams. Useful applications of
AI/ML in primary care will undoubtedly emerge.
Complexity science suggests that it is much more
likely that these tools may assist primary care with
discrete functions with highly focused outcomes,
but it is very unlikely that AI/ML tools will replace
complex relationship-centered decision making by
physicians and their teams (though the team com-
position may evolve if administrative burden can
truly be reduced).

The authors acknowledge Jacqueline Kueper, PhD, Ginetta
Salvaggio, MD, and C. J. Peek, PhD, for their participation in
the original NAPCRG Forum and comments on this subject.

To see this article online, please go to: http://jabfm.org/content/
37/2/332.full.
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Appendix.

Complex Adaptive Systems Further Explained

Complex systems contain many direct and indirect
feedback loops. Complex systems are open systems
—they exchange energy or information with their
environment (their context) — and operate dynam-
ically. Any complex system thus has a history, and
the history is of cardinal importance to the behav-
ior of the system influenced by its previous path.
Because the interactions are rich, dynamic, fed
back, and, above all, nonlinear, the behavior of the
system as a whole cannot be predicted from an
inspection of its components. The notion of
“emergence” is used to describe this aspect. The
presence of emergent properties does not provide
an argument against causality, only against deterministic
forms of prediction. Complex systems are adaptive.
They can (re)organize their internal structure without
the intervention of an external agent.1

Practice Domains
Knowledge itself is complex and thus not all

knowledge contributes equally to what we know.2
The Cynefin framework (Figure 1a) is 1 approach to
understand decision making in complex systems, and
it helps visualize the medical knowledge domains
(Figure 1b) that facilitate clinical decision making in
a primary care context.3 In the obvious quadrant,
direct cause and effect relies on explicit knowledge
trials such as randomized controlled trials (RCTs)
and meta-analyses of RCTs. This is the domain most
conducive to monitoring by simple single disease
guidelines. Perhaps the recent success of large lan-
guage models such as ChatGPT to answer medical
license test questions fit in this domain.4 On the

other hand, ChatGPT has been found to produce
errors in stating facts and synthesizing data from the
medical literature.5

In the complicated quadrant, cause and effect are
discernable through multilayered interacting parts
that also rely on explicit knowledge trials. In these
clinical scenarios, complicating factors such as comor-
bidities may influence patient care recommendations,
but the relationships of inputs and outputs are linear
and follow parametric patterns. An example is balanc-
ing the negative impacts of comorbidities on a deci-
sion of whether a major surgical procedure is more
likely to benefit or harm a patient.

In the complex quadrant, there are so many
interacting parts whose relationships are perceiva-
ble, but not fully predictable in real time, and thus it
is difficult to predict the behaviors and outcomes
based on the knowledge of its component parts.
Multiple layers of system hierarchies interact
through nonlinear feedback loops with nonlinear
relationships between inputs and outputs, making
outcomes unpredictable and sometimes surprising.
Relationships between inputs and outputs often fol-
low log-linear, or Pareto distributions. An example
is caring for a dying patient and her family, balanc-
ing all the often competing organic medical, psy-
chological, legal, and familial needs. It is often tacit
knowledge rather than explicit data that direct care
for these complex needs.

In the chaotic quadrant, the various components
have no apparent relationship to each other, leading
to a crisis with an emergent new order and/or a break-
down of the existing order, for example, the early days
of the COVID-19 pandemic.

The ability of AI/ML to add value to care delivery
likely diminishes as 1 moves from the simple to the
chaotic domains. A further examination of complex
system understandings and the role of AI/ML is
shown in Table A1.

Figure A1. The Cynefin domains and its application to knowledge in medicine.6
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Table A1. AI/ML Features and Their Relationship to Complex Adaptive Systems and Primary Care

Complexity in Primary Care AI/ML/Big Data

Philosophy A complex system is one in which there are so
many interacting parts that it is difficult to
predict the behavior of the system based on
knowledge of its component parts. People are
the glue that binds and maintains the system.7

Complex systems have chaotic and non-linear
complex parts as well as linear and
complicated features.

Artificial intelligence (AI) is intelligence—
perceiving, synthesizing, and inferring
information—demonstrated by machines, as
opposed to intelligence displayed by non-
human animals and humans.

No established unifying theory or paradigm has
guided AI research for most of its history.

The Challenge The General Systems Theory (GST)8 is
studying the whole system, to clarify the
principles that can be applied to all types of
systems at all levels of their nesting in the
other systems in terms of their viability in all
subject areas of research, given their
interaction with each other in real-time and
in fuzzy environment, surrounding them.9

How to inform the human in the loop with
intelligent reliable information that is
relevant?

Develop intelligent systems thinking in an
autonomous fuzzy control, operate in fuzzy
environments under uncertainty, and
communicate with humans and other systems
in different languages, in the dissimilar
domains, where processes, situations and
factors of influence on the control object and
back; a) cannot be determinate and structured
in advance, and b) may be understood
relevantly and unambiguously.9–11

Responding to the
dynamical systems that
vary over time.

The human brain can be understood as a
complex adaptive system itself that have
evolved to enable humans to navigate
complex environments12 and dynamical
systems. Exploration is ongoing in attempts
to understand, emotion, context and human
reasoning.13,14

Dynamical systems obey differential equations
involving time derivatives. Analytical
resolution of such equations or their
integration over time through computer
simulation may facilitate the prediction of the
future behavior of the system.

Intelligence Human Intelligence aims to adapt to new
environments by utilizing a combination of
different cognitive processes. The human
brain is analogous and uses its computing
power to recognize multiple patterns, diverse
memories, interoception14,15 and ability to
think to make sense16 of their environment
and make decisions.

Artificial Intelligence aims to build machines
that can mimic human behavior and perform
human-like actions. AI-powered machines
rely on data and specific instructions fed into
the system. They have perfect memory but
the memory is constrained by their capacity
to analyze and infer from human and other
inputs.

Environmental and
sensory Inputs - theory

Human consciousness in an adaptation to a new
environmental disturbance. Through the
conversion of neural cognitive activity -
thoughts - about the state of the outside
world into the way that world is experienced
through the senses, the thoughts gain the
reality that sensory images have.17

Human intelligence (explicit) is the main
contributing factor that has given definition
to the simulations that are created in machine
intelligence. Artificial intelligence depends on
the best current theoretical models, input
data, and the constraints of the AI machine
problem-solving skills.

Strengths Human cognition has evolved to adapt to our
changing world and navigate our
environments.18 Garnering both explicit and
implicit knowledge, exhibits the highest
degree of evolutionary cortical expansion,
supported by receptor diversity and human-
accelerated genes underpinning synaptic
function.

Artificial machine learning is a development
from human cognition to address weakness in
human cognition – access to information,
memory, processing time, etc. Machines are
better than humans at processing large
amounts of data. This will be most useful in
the simple and complicated domains of health
care knowledge.

Weaknesses Humans have limited explicit memory (e.g.,
cannot easily use the whole of PubMed on a
topic) compared with machine intelligence;
Humans have as a group a wide spectrum of
intellectual capabilities; however these are
influenced by stress, unsupportive
environments, distractions, lack of access to a
vast body of knowledge that is exponentially
growing every day.

AI is still in its early stages of development.
Training AI systems is a time-consuming
process. AI will have all the biases and
limitations of those who wish to ensure top-
down control via protocol vs guidance.

Continued
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Most existing successes in AI/ML represent small and
constrained components of the complex health care sys-
tem such as measuring pixels on an image to help make a
diagnosis, or using voice recognition to monitor and treat
a single mental health concern. The data used are rela-
tively confined and have linear deterministic relationships
with outcomes (a direct predictable link from input to
output). AI/ML has generally failed when more complex-
ities are considered across different informational silos,
agents, and hierarchies; and when the relationship
between data input and desired outcomes are nonlinear
with power law distributions of inputs and outputs,
include feedback loops, and are nondeterministic.
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Table A1. Continued

Complexity in Primary Care AI/ML/Big Data

Challenges Many tasks are time consuming. Workforce and
remuneration challenges undermine personal
communication, interoception, and person-
centered care. How to self-organize bottom-
up care when practice is driven by top-down
constraints and funding formulae?

Top-down medical industrial for-profit drivers
of the artificial data and information systems
may come to dominate the primary care space
without truly understanding the human and
environmental dynamics.

How to self-organize and adapt in the complex
and even chaotic domains of practice?

The information system should serve rather
than dominate clinical care.

doi: 10.3122/jabfm.2023.230219R1 Complexity Science Predictions About AI/ML 345

 on 4 M
ay 2025 by guest. P

rotected by copyright.
http://w

w
w

.jabfm
.org/

J A
m

 B
oard F

am
 M

ed: first published as 10.3122/jabfm
.2023.230219R

1 on 13 M
ay 2024. D

ow
nloaded from

 

http://www.jabfm.org/

