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Use of Patient-Reported Symptom Data in Clinical
Decision Rules for Predicting Influenza in a
Telemedicine Setting

W. Zane Billings, Annika Cleven, Jacqueline Dworaczyk, Ariella Perry Dale, PhD, MPH,
Mark Ebell, PhD, Brian McKay, PhD, and Andreas Handel, PhD

Introduction: Increased use of telemedicine could potentially streamline influenza diagnosis and reduce
transmission. However, telemedicine diagnoses are dependent on accurate symptom reporting by patients.
If patients disagree with clinicians on symptoms, previously derived diagnostic rules may be inaccurate.

Methods: We performed a secondary data analysis of a prospective, nonrandomized cohort study at
a university student health center. Patients who reported an upper respiratory complaint were required
to report symptoms, and their clinician was required to report the same list of symptoms. We examined
the performance of 5 previously developed clinical decision rules (CDRs) for influenza on both symp-
tom reports. These predictions were compared against PCR diagnoses. We analyzed the agreement
between symptom reports, and we built new predictive models using both sets of data.

Results: CDR performance was always lower for the patient-reported symptom data, compared with
clinician-reported symptom data. CDRs often resulted in different predictions for the same individual,
driven by disagreement in symptom reporting. We were able to fit new models to the patient-reported
data, which performed slightly worse than previously derived CDRs. These models and models built on
clinician-reported data both suffered from calibration issues.

Discussion: Patients and clinicians frequently disagree about symptom presence, which leads to
reduced accuracy when CDRs built with clinician data are applied to patient-reported symptoms.
Predictive models using patient-reported symptom data performed worse than models using clinician-
reported data and prior results in the literature. However, the differences are minor, and developing
new models with more data may be possible. ( J Am Board Fam Med 2023;36:766–776.)
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Introduction
Influenza causes disease in millions of individuals,
including hundreds of thousands of hospitalizations,

every year in the United States alone.1 Globally, sea-
sonal influenza is estimated to cause hundreds of
thousands of deaths each year, disproportionately
affecting the elderly.2

Clinical decision rules (CDRs, also called clinical
prediction rules) are tools used by physicians to
diagnose patients based on observable evidence.3–6

Since many of these CDRs are based on signs and
symptoms which can be observed by patients,
CDRs may be a useful tool for remote forward tri-
age services. However, patients and clinicians can
disagree on what symptoms are present.7–14 Most
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CDRs based on signs and symptoms were designed
using clinician-reported data. The usefulness of
these rules for remote triage therefore depends on
whether patients can accurately provide necessary
information. Robust forward triage systems have
the potential to reduce burden on the health care
system, but to our knowledge, no one has studied
whether these rules are valid in a remote health
care context.

The recent rise in telemedicine may provide
unique opportunities to reduce influenza transmis-
sion during epidemics,15,16 as well as improve surveil-
lance,17,18 diagnosis,19 and treatment.20 Virtual visits
are becoming more popular, and can improve the
quality and equity of health care.21 Implementing
forward triage systems, which sort patients into risk
groups before any in-person health care visits,
through telemedicine can leverage these advantages,
especially if automated systems are implemented.
Patients who have low risk could be recommended
to stay home, rather than seeking in-person health
care services.21–23 Screening out these low risk
patients reduces the potential contacts for infected
individuals receiving in-person health care, poten-
tially reducing transmission during an epidemic.24,25

In our analysis, we evaluated several previously
developed CDRs for the diagnosis of influenza to see
how they performed for both clinician and patient-
reported symptoms. We then examined differences
between symptom reports by patients and by clini-
cians to determine if disagreement was a major
factor in determining differences in CDR per-
formance. Finally, we fit similar models to
patient-reported symptom data to determine if
updated CDRs would be beneficial for triage.
More accurate CDRs for triage could reduce the
burden of influenza by reducing transmission
and improving treatment.

Methods
Collection and Preparation of Data

The data used in this secondary analysis were
collected from a university health center from
December 2016 through February 2017. Patients
with an upper respiratory complaint filled out a
questionnaire before their visit, and indicated the
presence or absence of several symptoms. Patients
were required to answer all questions on the survey.
At the time of the visit, a clinician was required to
mark the same symptoms as present or absent.

Previous publications detail the study design and
data collection methods.26,27 Briefly, patients
18 years and older who presented with influenza-
like illness (ILI) were recruited and given
informed consent. ILI was defined as cough or at
least two of the following symptoms: headache,
fever, chills, fatigue, muscle pain, sore throat, or
joint pain. Patients were excluded if English was
not their preferred language for appointments,
they did not provide consent, or they withdrew
consent at any time. All data were deidentified
before we received them.

A total of 19 symptoms and the duration of ill-
ness were assessed by both the clinician and patient.
Duration of illness was collected as free text data, so
we recoded this variable as a dichotomous indicator
of whether the onset of disease was less than
48hours before the clinic visit, which we called
acute onset. Going forward, when we say “symp-
tom,” we include acute onset as well.

In our study sample, all patients received a diag-
nosis from the clinician, but some additionally
received a PCR diagnosis. Clinicians in our study
were not blinded to lab results before making a di-
agnosis, but still sometimes disagreed with PCR
results (see Online Appendix). Since PCR is consid-
ered the “gold standard” of viral diagnoses,28 we
elected to use the PCR subset for our analyses. The
PCR tested for both influenza A and influenza B,
and we report the number of observed cases of each
type. In all our following analyses we combined
influenza A and B cases, which is consistent with
the methodology of previous studies.29,30

We estimated the prevalence of each symptom
as reported by clinicians and by patients in the over-
all group, as well as stratified by diagnosis. We also
report descriptive statistics for age and sex, which
were collected for the PCR subset of the study.

Evaluation of Clinical Decision Rules

We applied several CDRs to both patient-reported
and clinician-reported symptom data. We chose to
apply five CDRs in total that could be used by a cli-
nician or implemented as part of a telemedicine
screening service. We used three heuristic decision
rules: presence of both cough and fever (CF);
presence of cough and fever with acute onset of
disease (CFA); and presence of cough, fever, and
myalgia all simultaneously (CFM).31,32 We also
used a weighted score rule derived from a logistic
regression model (WS), which included both
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fever and cough simultaneously, acute onset, my-
algia, chills or sweats29; and a decision tree model
(TM), which included fever, acute onset, cough,
and chills or sweats.30

The three heuristic rules all produce binary out-
comes, assigning a patient to the high risk group if
they display all indicated criteria, or the low risk
group otherwise. The score and tree both produce
numeric probabilities of predicted risk, which were
converted into risk groups using predefined thresh-
olds. Patients with risk below 10% (the testing
threshold) were assigned to the low risk group,
patients with risk below 50% (the treatment thresh-
old) were assigned to the moderate risk group, and
patients with risk at least 50% or greater were
assigned to the high risk group, following a stand-
ard model of threshold diagnosis.22,29 As a sensitiv-
ity analysis, we varied these thresholds (shown in
the Online Appendix). We compared the perform-
ance in our data to previously reported perform-
ance metrics.6 For the heuristic rules, AUROCC
(equivalent to balanced accuracy in the case of bi-
nary predictions) values were derived from the sen-
sitivity and specificity reported in the original
article.32 For the WS, AUROCC was taken from a
previous external validation and was calculated on
the entire set of patients.6,33 For the TM, AUROCC
was calculated from the validation set.30

We evaluated the agreement between patient
and clinician symptom reporting using unweighted
Cohen’s kappa.34 Qualitative assessment of agree-
ment using the kappa estimates was based on pre-
viously published guidelines for use in medical
settings.35 As a sensitivity analysis, we calculated
the percent agreement, the prevalence-and-bias-
adjusted kappa (PABAK),36 Gwet’s AC1 statis-
tic,37,38 and Krippendorff’s a statistic38,39 (shown
in the Online Appendix). We calculated 95% con-
fidence intervals for these statistics using the em-
pirical percentiles of the statistic of interest
calculated on 10,000 bootstrap resamples.41

Developing New Prediction Models

We assessed whether patient-reported symptom
data could be used to build CDRs with better per-
formance. We fit new models separately to the
patient-reported and clinician-reported data. To
better assess the performance of our new models,
we divided our data into 70% derivation and 30%
validation subgroups. Sampling for the data split
was stratified by influenza diagnosis to ensure the

prevalence of both groups was similar to the overall
prevalence.

To develop a weighted score, we used several
variable selection methods to fit models, and
selected our final model based on AIC, a priori im-
portant symptoms, and parsimony. We fit a multi-
variable logistic regression model with diagnosis
predicted by the selected variables, and rounded the
coefficients to the nearest half (coefficients were
doubled if rounding resulted in half-points). We fit
a secondary logistic regression model with diagno-
sis predicted only by the score to estimate the risk
associated with each score value.

We considered four different tree-building
algorithms to construct a decision tree model: re-
cursive partitioning (CART),42,43 fast-and-frugal
tree,44,45 conditional inference,46–48 and C5.0.49–51

We then selected the best tree using Area Under the
Receiver Operating Characteristic Curve (AUROCC)
and parsimony. We did not manually prune or adjust
trees.

Finally, we fit several machine learning models,
which are less interpretable but often more power-
ful. We used 10-fold cross-validation repeated 100
times on the derivation set to train the models. We
evaluated the performance of all models using
AUROCC. All models were trained only on the
derivation set, and performance was estimated on
both the derivation set and the validation set sepa-
rately. The Online Appendix contains more details
on our methodology.

Implementation

Our study is a secondary data analysis of previously
collected data, and the data were not collected with
our research questions in mind. A formal hypothe-
sis testing framework is inappropriate in this con-
text, as tests would have limited power and inflated
false discovery rates. Therefore, we elected not to
conduct any formal hypothesis tests, and our results
should be interpreted as exploratory.

All analyses, figures, and tables were completed
in R version 4.3.0 (2023-04-21 ucrt)52 using the
boot package,40,41 and several packages from the
tidyverse suite.53–61 We fitted our models
using the tidymodels infrastructure.62–71

The manuscript was prepared using R markdown
with the bookdown package.72–75 Tables were
generated with gtsummary76 and flextable.77

Figures were generated with ggplot2.59,78
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In the Online Appendix, we provide detailed ses-
sion information (including a list of packages and
versions), all necessary code and data, and instruc-
tions for reproducing our analysis.

Results
Descriptive Analysis

In total, there were n = 250 patients in our study
with symptom reports and a PCR diagnosis. The
prevalence in our data was about 51% (127 out of
250 patients), with 118 cases of Influenza A and 9
cases of influenza B. There were slightly more
females 148ð Þ than males 102ð Þ in the group, and
most participants were young adults. Only 10% of
participants were older than 22.

The prevalence of each symptom is shown in
Table 1. Patients tended to report more symp-
toms than clinicians. Cough and fatigue were
slightly more common in influenza positive
patients, while chills/sweats and subjective fever
were much more common in influenza positive

patients. No symptoms were more common in
influenza negative patients. Overall, clinicians
reported several symptoms less commonly than
patients: chest congestion, chest pain, ear pain,
shortness of breath, and sneezing. Physicians were
more likely to report fever, runny nose, and phar-
yngitis. Some symptoms also show interaction
effects between the rater and the diagnosis. (ie,
one rater was more likely to report a symptom,
but only in one diagnosis group.) For example,
clinicians more commonly reported eye pain in
influenza positive patients, and less commonly
reported headache in influenza negative patients.

Evaluation of Previous Influenza CDRs

Table 2 shows the five CDRs we applied (CF, CFA,
CFM32; WS29; and TM30), the symptoms they use,
and the previously reported AUROCC for each
CDR. The table also shows the AUROCC when
the rule was used to make predictions with the
patient and clinician reported symptoms. A CDR
that makes perfect predictions would have an

Table 1. Prevalence of Each Symptom as Reported by Clinicians and Patients

Influenza 1 (n 5 127) Influenza – (n 5 123) Overall (n 5 250)

Clinician Patient Clinician Patient Clinician Patient

Total number of symptoms 10 (4, 17) 11 (6, 20) 8 (3, 15) 10 (4, 18) 10 (3, 17) 11 (4, 20)
Acute onset 70 (55%) 65 (51%) 53 (43%) 61 (50%) 123 (49%) 126 (50%)
Chest congestion 32 (25%) 80 (63%) 30 (24%) 47 (38%) 62 (25%) 127 (51%)
Chest pain 12 (9.4%) 44 (35%) 10 (8.1%) 24 (20%) 22 (8.8%) 68 (27%)
Chills sweats 116 (91%) 115 (91%) 76 (62%) 84 (68%) 192 (77%) 199 (80%)
Cough 126 (99%) 122 (96%) 111 (90%) 102 (83%) 237 (95%) 224 (90%)
Ear pain 7 (5.5%) 27 (21%) 12 (9.8%) 35 (28%) 19 (7.6%) 62 (25%)
Eye pain 64 (50%) 21 (17%) 20 (16%) 19 (15%) 84 (34%) 40 (16%)
Fatigue 113 (89%) 120 (94%) 75 (61%) 108 (88%) 188 (75%) 228 (91%)
Headache 112 (88%) 103 (81%) 76 (62%) 98 (80%) 188 (75%) 201 (80%)
Itchy eye 5 (3.9%) 25 (20%) 3 (2.4%) 27 (22%) 8 (3.2%) 52 (21%)
Myalgia 106 (83%) 111 (87%) 58 (47%) 98 (80%) 164 (66%) 209 (84%)
Nasal congestion 122 (96%) 99 (78%) 101 (82%) 90 (73%) 223 (89%) 189 (76%)
Pharyngitis 121 (95%) 106 (83%) 114 (93%) 110 (89%) 235 (94%) 216 (86%)
Runny nose 121 (95%) 93 (73%) 97 (79%) 78 (63%) 218 (87%) 171 (68%)
Shortness of breath 16 (13%) 55 (43%) 17 (14%) 36 (29%) 33 (13%) 91 (36%)
Sneeze 16 (13%) 68 (54%) 12 (9.8%) 57 (46%) 28 (11%) 125 (50%)
Subjective fever 113 (89%) 96 (76%) 71 (58%) 58 (47%) 184 (74%) 154 (62%)
Swollen lymph nodes 11 (8.7%) 55 (43%) 31 (25%) 62 (50%) 42 (17%) 117 (47%)
Tooth pain 0 (0%) 26 (20%) 2 (1.6%) 34 (28%) 2 (0.8%) 60 (24%)
Wheeze 15 (12%) 52 (41%) 16 (13%) 31 (25%) 31 (12%) 83 (33%)

Notes: We calculated the prevalence of each symptom in the overall subsample, as well as stratified by influenza diagnosis. The table
shows the number of participants positive (Point Prevalence) for all symptoms, and the median (Range) for the total number of
symptoms.
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AUROCC of 1, while random guessing would have
an AUROCC of 0.5.

The CFA and TM rules performed worse on
our data, while the CF, CFM, and WS rules per-
formed slightly better. The WS rule was the best
performing rule using the clinician-reported symp-
tom data, while multiple rules (WS, TM, and CF)
performed similarly on the patient data. Every score
performed worse when the patient-reported symp-
toms were used, but any CDR that performed bet-
ter than previously reported was still better when
the patient-reported data were used. The drop in
performance was small for most rules: CF, CFA,
and the tree model were only slightly different
from the clinician-reported symptom metrics.
There was a substantive drop in performance for
the CFM rule and theWS.

Analysis of CDR Agreement

To investigate the differences between patient-based
and clinician-based CDR performance, we assessed
the agreement between their predictions. For the
three discrete heuristic CDRs, we obtained Cohen’s
kappa values of k = 0:52; 95% CI: 0:41,0:62 for CF,
k = 0:57; 95% CI: 0:46,0:67 for CFA, and k ¼
0.50; 95% CI: 0.39,0.60 for CFM. All the kappa values
represent a moderate level of agreement.35 Table 3
shows the contingency tables for each of the heuristic
rules with the PCR diagnosis. Patients had a slightly
lower accuracy for each of the three rules, despite a
higher specificity (true negative rate). Clinicians had a
higher sensitivity (true positive rate) for all three rules.

Rather than discretizing the predictions from the
WS and TM, we visually assessed the correlation
between the results from clinician-reported and

patient-reported symptoms (Figure 1). Most of the
scores tended to be large, and patients and clinicians
tended to agree more on larger scores. For the TM,
patients and clinicians were also likely to agree when
the model predicted its minimum value for a patient.

Assessment of Interrater Agreement

To understand the disagreement in CDR predic-
tions between patient-reported and clinician-reported
data, we examined the agreement between clinician
and patient symptom reports. Figure 1 shows the
calculated Cohen’s kappa statistics and confidence
intervals for each symptom. The only symptom
which achieved moderate agreement was acute onset

Table 2. Details on Previously Developed CDRs Along with Prior Reported AUROCC

CDR Symptoms Source
Previously
Reported

Clinician-reported
Symptoms

Patient-reported
Symptoms

CF Cough, fever Monto 2000 0.66 0.70 0.69
CFA Cough, fever, acute onset Monto 2000 0.65 0.63 0.61
CFM Cough, fever, myalgia Monto 2000 0.65 0.73 0.68
WS Fever and cough, acute onset,

myalgia, chills/sweats
van Vugt 2015 0.71 0.77 0.69

TM Fever, acute onset, cough,
chills/sweats

Afonso 2012 0.80 0.71 0.69

Abbreviations: AUROCC, Area Under the Receiver Operating Characteristic Curve; CDR, Clinical decision rules; CF, presence of
cough and fever; CFM, presence of cough, fever, and myalgia; CFA, presence of cough and fever with acute onset of disease; TM, de-
cision tree model; WS, logistic regression model.
Notes: We show AUROCC values reported in previous studies, along with the AUROCC values when our clinician-reported data
and patient-reported data are used in the CDRs and compared to the true PCR diagnoses.

Table 3. Number of Patients Who Were Predicted to

Have Influenza by Each of the Three Heuristic CDRs,

Which Produce Binary Outcomes

Clinician
(n 5 250)

Patient
(n 5 250)

Influenza
1

Influenza
2

Influenza
1

Influenza
2

CF
Positive 112 (88%) 60 (49%) 91 (72%) 42 (34%)
Negative 15 (12%) 63 (51%) 36 (28%) 81 (66%)

CFA
Positive 66 (52%) 31 (25%) 50 (39%) 22 (18%)
Negative 61 (48%) 92 (75%) 77 (61%) 101 (82%)

CFM
Positive 100 (79%) 40 (33%) 85 (67%) 38 (31%)
Negative 27 (21%) 83 (67%) 42 (33%) 85 (69%)

Abbreviations: CDR, Clinical decision rules; CF, presence of
cough and fever; CFM, presence of cough, fever, and myalgia;
CFA, presence of cough and fever with acute onset of disease.
Notes: The predictions are stratified by PCR influenza diagnosis.
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(k = 0:62; 95% CI: 0:52,0:72), according to the clin-
ical guidelines. Symptoms with weak agreement
were cough (k = 0:42; 95% CI: 0:20,0:60), chills
and sweats (k = 0:45; 95% CI: 0:31,0:58) and sub-
jective fever (k = 0:55; 95% CI: 0:44,0:66), which
were common across the CDRs we used. However my-
algia (minimal agreement; k = 0:30;95% CI: 0:18,
0:42) was also included in some of the CDRs.

Patients tended to report a higher number of
symptoms overall (Figure 2), including symp-
toms which were rarely reported by physicians
like tooth pain, and symptoms with specific clini-
cal definitions like swollen lymph nodes and

chest congestion (Table 1). Patients also were
less likely to report certain symptoms, including
pharyngitis, runny nose, and nasal congestion.
These discrepancies occur for symptoms with
lower Cohen’s kappa values. However, patients and
physicians were about equally likely to report acute
onset, supported by a higher kappa value.

In our sensitivity analysis using other measure-
ments of inter-rater agreement, there were no
qualitative differences when using other kappa-
based statistics. Krippendorff’s a showed incon-
sistent trends.

Development of New Models

The differences between patient-reported and
clinician-reported symptoms, and subsequent
differences in CDR performance, suggest that
CDRs developed using patient data might per-
form better than previous scores developed
using clinician-reported data. We built new
models using the patient-reported data by emu-
lating the previously developed rules. We selected a
point score, a decision tree, and a machine
learning algorithm for further examination.
We split the data into a derivation set of 176
patients, and a validation set of the remaining 74
patients. All models were trained only on the deriva-
tion set.

Based on our selection criteria, the best score
model used symptoms selected via LASSO penaliza-
tion.79 The score model contained the symptoms
chills or sweats (2 points), cough (5 points), and fever

Figure 1. Cohen’s kappa values for each symptom. Cohen’s kappa was used to measure agreement between clini-

cian diagnoses and the lab test methods. Qualitative agreement categories were assigned based on previously

published guidelines for clinical research.

Figure 2. Clinician versus patient scores for both of

the continuous CDRs. The CDRs only have a discrete

set of outputs, so the size and color of the points

reflects the number of patients (overlapping observa-

tions) at each location. If the models agreed perfectly,

all observations would fall on the dashed line.
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(4 points). The tree we selected was a conditional in-
ference tree containing the variables fever, shortness
of breath, wheeze, and cough. Out of the machine
learning models we fit, we selected a naive Bayes clas-
sification model, which performed competitively on
both the clinician-data and patient-data models, and
included all symptoms. For comparison, we applied the
same modeling procedures to the clinician-reported
symptom data. (See Online Appendix for modeling
details.)

Table 4 shows the AUROCC of each of the
selected models, using the clinician and the patient
data. When trained on the clinician-reported data,
the score and naive Bayes models performed better
on both the derivation and validation sets than

when trained on the patient-reported data. The
conditional inference tree performed better on the
validation group but worse on the derivation group
when trained on the clinician data.

When trained to the patient-reported symp-
tom data, all three models performed well on the
derivation group, but their performance dropped
substantially on the validation group. The valida-
tion group performance estimates the perform-
ance on new data, so all three models are likely
overfit. The naive Bayes model appeared to over-
fit the least.

We examined the quantitative risk predictions
made by the models, categorizing patients with risk
≤10% as low risk, patients with risk >10%
but ≤50% as medium risk, and patients with risk
> 50% as high risk. All three models assigned over
half of the study participants to the high-risk group,
and almost none to the low-risk group (Table 5).
Patients in the high-risk group are recommended to
seek in-person care in the context of a telemedicine
forward triage system.

If we increase the thresholds for risk groups, a
few more patients are classified as low or moderate
risk. For the patient data models, the majority of
patients remain in the high risk group. As a sensitivity
analysis, we used the same procedures to fit models
to the clinician-reported data. While models fit to
the clinician data were slightly better at identifying

Table 4. Derivation Set and Validation Set AUROCC

for Each of the Three Selected Models, Trained and

Evaluated on Either the Clinician or Patient Data

Derivation group Validation group

Clinician Patient Clinician Patient

LASSO point score 0.86 0.78 0.71 0.60
Conditional inference
tree

0.79 0.80 0.63 0.57

Naive Bayes classifier 0.83 0.79 0.74 0.68

Notes: The same individuals were used in the derivation and valida-
tion sets regardless of whether the clinician-reported symptom data
or patient-reported symptom data were used for modeling.

Table 5. Risk Group Statistics for the Models Built Using the Patient Data

Derivation group Validation group

Flu/Total (%) LR In Group (%) Flu/Total (%) LR In Group (%)

LASSO score
Low 0/5 (0.0) 0.0 2.9 0/0 (NA) NA 0.0
Moderate 20/77 (26.0) 0.3 44.3 16/34 (47.1) 0.8 45.3
High 68/92 (73.9) 2.8 52.9 23/41 (56.1) 1.2 54.7

Conditional inference tree (manual)
Low 1/32 (3.1) 0.0 18.4 5/12 (41.7) 0.7 15.8
Moderate 6/25 (24.0) 0.3 14.4 6/14 (42.9) 0.7 18.4
High 81/117 (69.2) 2.2 67.2 28/50 (56.0) 1.2 65.8

Naive Bayes classifier
Low 0/0 (NA) NA 0.0 0/0 (NA) NA 0.0
Moderate 0/7 (0.0) 0.0 4.0 0/4 (0.0) 0.0 5.3
High 88/167 (52.7) 1.1 96.0 39/72 (54.2) 1.1 94.7

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; LR, stratum-specific likelihood ratio.
Notes: The models were trained using the derivation set of clinician-reported symptom data, and evaluated on both the derivation
and validation sets separately. We obtained quantitative risk predictions for each individual from the models, and assigned individuals
with a risk less than 10% to the low risk group, individuals with a risk between 10% and 50% to the moderate risk group, and indi-
viduals with a risk greater than 50% to the high risk group.
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low- and medium-risk patients, the majority of
patients were still placed in the high risk group by
these models (see Online Appendix).

Discussion
We found that previously developed CDRs per-
form less well when used with patient-reported
symptom data, as opposed to clinician-reported
symptom data. Our analysis implies that patient-
reported symptom data are likely to be less reliable
for influenza triage than clinician-reported symp-
tom data. We observed notable disagreement in
many influenza-like illness symptoms, which may
explain this discrepancy. Neither the previously
developed CDRs, nor our new models fit to the
patient-reported data could achieve the same per-
formance with patient-reported symptom data as
the best models using the clinician-reported data.
However, evaluating the magnitude of these differ-
ences is difficult, and further evaluation (eg, a cost-
benefit analysis) is necessary to determine whether
the difference in predictive power of the models is
meaningful in clinical practice.

As clinicians train for several years to identify
signs and symptoms of illness, our results may not
be surprising. Previous studies identified that
patients and clinicians defined “chest congestion7”,
sinus-related symptoms,11,12 and throat-related
symptoms (among others).13 Given the prior evi-
dence for multiple symptoms, similar discrepancies
likely exist with other symptoms. The design of the
questionnaire could potentially be modified to bet-
ter capture the information that would be gained by
a clinician’s assessment of the patient. The prior
work suggests that patients may not understand
what a given symptom means, so providing defini-
tions or guides to self-assessing a symptom may be
beneficial. Consistent with prior observations,
patients in our study also tended to report more
symptoms, which could point to issues with the
questionnaire designed. All patients in our study
were those who sought out health care and wanted
to see a clinician, which may bias the reporting of
symptoms. This bias might be present in a teleme-
dicine triage context as well.

Our study was limited by a small sample size
with accurate diagnoses, which makes fitting pre-
dictive models difficult, and a larger sample with
accurate reference standards might provide more
insight. Our study sample was also composed of

young adults aged 18–25 living on a college cam-
pus. Our sample is likely unrepresentative of the
general population, and our results may reflect a
healthy worker bias. Young adults who are able to
attend college are typically at low risk for influenza
complications, and our study sample is biased to-
ward less severe cases of influenza, which may be
more difficult to distinguish from other nonsevere
ILIs (eg, rhinovirus or RSV). This bias could
explain our issues with model calibration in the low
risk group – without any truly high risk patients in
our sample, the risk predictions cannot be accu-
rately calibrated. More demographic variation in
future studies would also allow for known risk fac-
tors like age to be implemented in influenza risk
models.

Analyzing the model goodness-of-fit using
risk group predictions reveals further questions.
Inclusion criteria for our study population included
seeking health care and presenting with at least 2
symptoms, so potentially every member of our popu-
lation is at high risk of influenza. The distribution of
risk estimates in our population indicates that
patient-reported CDRs might be viable in other pop-
ulations which is more likely to feature diverse “true”
risks of influenza across individuals.

Furthermore, combining patient-reported ques-
tionnaires with home rapid testing may provide a
viable alternative to prediction methods based only
on symptom data.80 While rapid tests have a high
false negative rate, they are cheap (compared with
PCR testing), easy to use, and may provide more
objective information. Combining rapid tests with
symptom questionnaires and CDRs that are opti-
mized for detection of low-risk cases may counter-
balance the low sensitivity of the test.

In conclusion, we find that patient-reported
symptom data are less accurate than clinician-
reported symptom data for predicting influenza
cases using CDRs. Our results follow naturally
from previous work showing discrepancies
between clinician and patient reports of symp-
toms, and highlight critical issues with patient-
based triage systems. However, clinical evaluation
is needed to determine whether the difference in
performance is meaningful in a real-world con-
text. We conjecture that improved questionnaires
or the possible addition of home test results could
make patient reports more useful. Regardless,
improving remote triage for telemedicine cases is
critical to prepare public health infrastructure for
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upcoming influenza pandemics. These CDRs
may be a cost-effective tool for combating future
influenza epidemics, but further development is
needed.

We thank the Infectious Disease Epidemiology Research Group
at the University of Georgia for feedback on our research.

To see this article online, please go to: http://jabfm.org/content/
36/5/766.full.
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Appendix.

Use of Patient-reported Symptom Data in Clinical Decision Rules for Predicting Influenza in
a Telemedicine Setting

1. Instructions for Reproducing Analysis
1. Either clone the git repository, or download and unzip the folder.
2. Navigate to the “R” subdirectory and follow the directions there for the order to run code files.
3. When you run a code file, either “run all” or “source” the script from your IDE/GUI. (You could also run

via command line if you prefer but it is unnecessary.)

2. Detailed Methods and Results

2.1 Sample Size and Data Cleaning
In total, we had records for 3117 unique visits to the clinic. Of these records, 7 were duplicate entries in the

data set we received, which were removed as they were attributable to clerical issues with the electronic system.
In addition, 635 were missing symptom data. These records were collected during the first few weeks of data col-
lection, and missing values were due to issues with the collection protocol and database. These patients were
excluded from the analysis, as the mechanism of missingness was known to be unrelated to any of the fields of in-
terest. The final study sample included 2475 with complete data, not all these patients received a lab diagnosis.

All patients received a final diagnosis by their clinician. One subset of 250 patients received reverse transcription po-
lymerase chain reaction (PCR) diagnoses, and a second, mutually exclusive subset of 420 patients received rapid influ-
enza diagnostic test (RIDT) diagnoses. Patients were specifically recruited into the PCR group, and out of patients in
the “usual care” (non-PCR) group, RIDT tests were administered at the clinician’s discretion. Notably, the original
study1 reported 264 records in the PCR group, but we only had 250 nonmissing nonduplicate patients in this group.

2.2 CDR Assessment
We note that the TM utilizes the patient’s measured temperature rather than subjective fever. However,

patients were not asked to measure their own temperature at home during our study, so we assumed that any
report of subjective fever corresponded with a fever greater than 37.3°C. This likely impacted the performance
of the TM on our data.

2.3 Score Models
To develop a weighted score CDR, we followed the method used for the development of the FluScore CDR2,

with some minor deviations. We examined the differences in symptom prevalences between diagnostic groups,
correlations between symptoms, univariate logistic regression models for each symptom, a full multivariable
model, a multivariable model using bidirectional stepwise elimination for variable selection, and a multivariable
model using LASSO penalization for variable selection to determine which predictors should be included in the
score. We constructed several candidate scores and used information criteria (AIC/BIC), our knowledge of a pri-
ori important symptoms3, and parsimony to choose the best score model. We fit a multivariable unpenalized
logistic regression model including the identified predictors of interest and then rounded the coefficients (doubling
to avoid half points) to create a score model. Online Appendix Table 1 shows the performance of the candidate

Appendix Table 1. Model Performance Metrics for the Score Models

Name AIC BIC Tjur R2 Brier Score

LASSO score 196.64 209.28 0.28 0.18
A priori symptom score 198.62 217.58 0.28 0.18
Re-fit FluScore model (Ebell 2012) 199.65 215.44 0.27 0.18
Cough/fever symptom score 199.66 209.14 0.25 0.19
Cough/fever heuristic 200.72 207.04 0.24 0.19
Cough/fever/acute onset symptom score 201.11 213.75 0.26 0.19
Cough/fever/myalgia symptom score 201.34 213.97 0.26 0.19
LASSO heuristic 204.82 211.14 0.22 0.19
Cough/fever/myalgia heuristic 208.96 215.28 0.20 0.20
Cough/fever/acute onset heuristic 232.31 238.63 0.07 0.23

Abbreviation: LASSO, Least Absolute Shrinkage and Selection Operator.
Notes: The models shown were fitted to the patient-reported data, and metrics were calculated using only the derivation set.
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models when using the patient-reported symptom data. Since the names of each model were arbitrarily chosen by us,
we show the coefficients with confidence intervals for each of the score models in Online Appendix Table 2.
Coefficients and confidence intervals for each of the score models fit to the clinician-reported symptom data are
shown in Table 3.
2.3.1. Tree Models

The best tree model was selected based on AUROCC, unnecessary shown in Online Appendix Table 5. A dia-
gram of the conditional inference tree fitted to the patient data is shown in Figure 1, and the tree fitted to the cli-
nician data is shown in Figure 2
2.3.2. Machine Learning Models

The candidate machine learning models were CART, conditional inference, and C5.0 decision trees with
hyperparameter tuning; Bayesian Additive Regression Trees (BART); random forest; gradient-boosted tree using
xgboost; logistic regression; logistic regression with LASSO penalization; logistic regression with elastic net
penalization; k-Nearest Neighbors (knn); naive Bayes; and Support Vector Machine (SVM) models with linear,
polynomial, and Radial Basis Function (RBF) kernels.

Hyperparameters were selected for these models via a grid search with 25 candidate levels for each hyperpara-
meter chosen by latin hypercube search of the parameter space. Candidate models were evaluated using 10-fold
cross validation repeated 100 times on the derivation set (for precision of out-of-sample error estimates), and the
hyperparameter set maximizing the AUROCC for each model was selected as the best set for that model. We
then evaluated the models by fitting the best model of each time to the derivation set, and examining the out-of-
sample performance on the validation set. Several of these models had similar validation set performances
(AUROCC within 0.01 units).

We selected the naive Bayes model as the model to present in the main text due to the competitive perform-
ance on both the clinician and patient data, and the relative simplicity of the classifier. While the naive Bayes
model is difficult to interpret and difficult to compute by hand, the calculations are computationally efficient and
simple. In a telemedicine setting where all calculations can be automated, these limitations matter much less than
they would in a traditional health care setting.

Appendix Table 2. Estimated Logistic Regression Coefficients (b) for the Patient-Reported Symptom Data

Score Model Symptom b Points 95% CI

A priori symptoms Cough 2.85 6 1.41, 4.80
Subjective_fever 1.99 4 1.21, 2.82
Acute_onset �0.27 �1 �1.02, 0.45
Chills_sweats 1.24 2 0.26, 2.29
Myalgia �0.69 �1 �1.85, 0.44

LASSO Chills_sweats 1.07 2 0.13, 2.07
Cough 2.74 5 1.34, 4.66
Subjective_fever 1.81 4 1.09, 2.56

Ebell flu score symptoms Acute_onset �0.39 �1 �1.13, 0.31
Myalgia �0.70 �1 �1.85, 0.43
Chills_sweats 1.16 2 0.20, 2.21
Cough:subjective_fever 2.19 4 1.46, 2.99

CF (unweighted) Cough:subjective_fever 2.17 2 1.50, 2.88
CFA (unweighted) Cough:subjective_fever:acute_onset 1.23 1 0.55, 1.96
CFM (unweighted) Cough:subjective_fever:myalgia 1.93 2 1.28, 2.61
LASSO variables (unweighted) Chills_sweats:cough:subjective_fever 2.05 2 1.39, 2.75
CF (weighted) Cough 2.63 5 1.24, 4.55

Subjective_fever 2.04 4 1.35, 2.77
CFA (weighted) Cough 2.61 5 1.21, 4.53

Subjective_fever 2.10 4 1.39, 2.87
Acute_onset �0.27 �1 �1.00, 0.44

CFM (weighted) Cough 2.68 5 1.27, 4.60
Subjective_fever 2.11 4 1.38, 2.89
Myalgia �0.30 �1 �1.34, 0.75

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; CF, presence of cough and fever; CFM, presence of cough,
fever, and myalgia; CFA, presence of cough and fever with acute onset of disease.
Notes: All models were fit only to the derivation set. Confidence intervals for the coefficients were calculated using the Wald Method.
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3. Clinician and PCR Agreement
We had many more patients included in our study with clinician diagnoses (n = 2475) than PCR tests

(n = 250). Using a larger sample size would likely help with model fitting. However, the clinicians in our study
saw the PCR results before they made their final diagnosis, so we cannot directly assess the accuracy of the clini-
cians at predicting influenza.

Despite having access to the PCR diagnoses, however, clinicians only agreed with the PCR results 86:0%
(95% CI: 81:6%, 90:0%) of the time. Online Appendix Table 4 shows the contingency table of diagnoses by the
clinicians versus the PCR results.

4. Additional IRR Statistics
There are known problems with the interpretation of Cohen’s kappa statistic. Cohen’s kappa depends on the

prevalence and variance of the data. That is, the percentage of yes/no answers affects Cohen’s kappa, even if the
actual percent agreement stays the same. Cohen’s kappa is maximized when half of the cases are true ‘yes’ answers
and half are true ‘no’ answers, which can lead to low kappa values when prevalence is high or low, regardless of
the actual percentage agreement. This property is sometimes called “the paradox of kappa”4,5.

Alternative statistics to Cohen’s kappa have been proposed, including the prevalence-and-bias-adjusted kappa
(PABAK)6, Gwet’s AC1 statistic7,8, and Krippendorff’s a statistic8,9. In addition to calculating Cohen’s kappa, we
calculated the percent agreement along with these three additional statistics (Figure 3). The percent agreement is
not corrected for chance agreement. PABAK and AC1 are corrected for chance agreement and were developed
to limit the so-called “paradox of kappa.” Finally, Krippendorff’s a is based on correcting chance disagreement
rather than chance agreement, and whether it is similar or different from kappa-based statistics is inconsistent.

Appendix Table 3. Estimated Logistic Regression Coefficients (b) for the Clinician-Reported Symptom Data

Score Model Symptom b Points 95% CI

A priori symptoms Cough 2.23 4 0.40, 5.20
Subjective_fever 1.37 3 0.39, 2.40
Acute_onset 0.20 0 �0.51, 0.91
Chills_sweats 0.91 2 �0.14, 1.99
Myalgia 0.67 1 �0.20, 1.52

LASSO Chills_sweats 1.39 3 0.20, 2.65
Subjective_fever 1.46 3 0.38, 2.61
Myalgia �0.39 �1 �1.53, 0.66
Runny_nose 1.49 3 0.14, 3.02
Eye_pain 1.37 3 0.49, 2.30
Swollen_lymph_nodes �2.20 �4 �3.49, �1.08

Ebell flu score symptoms Acute_onset 0.16 0 �0.55, 0.85
Myalgia 0.72 1 �0.12, 1.56
Chills_sweats 0.81 2 �0.22, 1.87
Cough:subjective_fever 1.54 3 0.63, 2.51

CF (unweighted) Cough:subjective_fever 2.27 5 1.50, 3.13
CFA (unweighted) Cough:subjective_fever:acute_onset 1.27 3 0.63, 1.93
CFM (unweighted) Cough:subjective_fever:myalgia 1.95 2 1.30, 2.64
LASSO variables (unweighted) Chills_sweats:subjective_fever:myalgia:runny_nose:

eye_pain:swollen_lymph_nodes
�0.44 �1 �2.49, 1.38

CF (weighted) Cough 2.62 5 0.86, 5.56
Subjective_fever 2.19 4 1.38, 3.10

CFA (weighted) Cough 2.66 5 0.89, 5.60
Subjective_fever 2.10 4 1.27, 3.03
Acute_onset 0.33 1 �0.36, 1.01

CFM (weighted) Cough 2.18 4 0.35, 5.15
Subjective_fever 1.71 3 0.81, 2.69
Myalgia 0.96 2 0.17, 1.75

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; CFM, presence of cough, fever, and myalgia; CFA, pres-
ence of cough and fever.
Notes: All models were fit only to the derivation set. Confidence intervals for the coefficients were calculated using the wald method.
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Appendix Figure 1. The conditional inference tree, fitted to the patient data.

Appendix Figure 2. The conditional inference tree, fitted to the clinician data.

Appendix Table 4. Contigency Table for PCR versus Unblinded Clinician Diagnoses for the Same Patients

PCR

Positive Negative Total

Clinician
positive 116 24 140
negative 11 99 110

Total 127 123 250

Abbreviation: PCR, Polymerase chain reaction.
Notes: Most of the time, clinicians agreed with the PCR results, but rarely the diagnoses differed. Justifications for clinician diagnoses
were not collected as part of the study.
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Our observed Krippendorff’s a values vary widely, and do not show a general trend along with the kappa-
type statistics we computed. In general, the AC1 and PABAK values follow the same trend as the reported
Cohen’s kappa values in the main text. Notably, Gwet’s AC1, when interpreted with the same guidelines
used for Cohen’s kappa, is larger and assigns some symptoms to a higher agreement level. Cough and phar-
yngitis are marked as high agreement using AC1, which may indicate that pharyngitis should be considered
in the development of influenza CPRs. Since pharyngitis was not included in the CPRs we tested, and cough
already had one of the highest agreement ratings in our main analysis, these findings do not substantially
change our conclusions.

5. Performance of All Models
We evaluated the performance of all the candidate models. Online Appendix Table 5 shows the derivation

and validation set AUROCC values on both the clinician-reported and patient-reported data for all the models
we fit.

6. Risk Groups for Clinician Data Models
We used the same 10% and 50% thresholds to place patients into risk groups using models fit to the clini-

cian-reported symptom data. We used the same modeling procedures as for the patient-reported data, but model
tuning was performed using the clinician-reported data instead.

Appendix Figure 3. Additional IRR statistics for agreement between symptom reports. Abbreviations: IRR,

Incidence rate ratio; PABAK, Prevalence-adjusted kappa; CI, Confidence interval.
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The models trained to the clinician data, with the exception of the tree model, performed slightly better at
placing patients in the low and moderate risk groups (Online Appendix Table 6). However, the majority of
patients were still placed in the high risk group for all 3 of the best-performing models, with no patients being
identified as low risk by the conditional inference tree model.

7. Risk Group Threshold Analysis
While the 10% and 50% thresholds are based on the expert knowledge of practicing physicians,2,10 a recent study

suggested increased thresholds of 25% and 60% in the context of telehealth visits for influenza-like illness.11

7.1 25%/60% Thresholds
We recomputed the risk groups and stratum-specific statistics for both the patient (Online Appendix Table 7)

and clinician (Online Appendix Table 8) reported data using the 25% and 60% thresholds.
For the patient models, while more patients were classified as low or moderate risk, the majority of patients

remained in the high risk group (as compared with the risk groups using the 10% and 50% thresholds). For the clini-
cian data models, the Naive Bayes and LASSO score models showed similar trends. Slightly more patients were cate-
gorized as low or moderate risk overall, but the majority of patients remained in the high risk group. However, for the
conditional inference tree model, there was an even distribution of patients across the three risk groups.

Appendix Table 5. Estimated AUROCC for All Candidate Models

Derivation group Validation group

Clinician Patient Clinician Patient

A priori symptom score 0.77 0.79 0.75 0.56
Cough/fever heuristic 0.71 0.75 0.67 0.55
Cough/fever symptom score 0.71 0.76 0.67 0.57
Cough/fever/acute onset heuristic 0.64 0.62 0.61 0.57
Cough/fever/acute onset symptom score 0.73 0.77 0.67 0.55
Cough/fever/myalgia heuristic 0.72 0.72 0.75 0.58
Cough/fever/myalgia symptom score 0.75 0.76 0.74 0.55
Re-fit FluScore model (Ebell 2012) 0.77 0.79 0.74 0.57
LASSO score 0.86 0.78 0.71 0.60
LASSO heuristic 0.50 0.74 0.57
CART (manual) 0.81 0.82 0.67 0.55
FFT 0.77 0.73 0.70 0.53
C5.0 tree (manual) 0.73 0.79 0.65 0.55
Conditional inference tree (manual) 0.79 0.80 0.63 0.57
Bayesian Additive Regression Trees (BART) 0.86 0.81 0.70 0.64
C5.0 tree (tuned) 0.85 0.75 0.60 0.57
CART (tuned) 0.81 0.82 0.67 0.55
Conditional inference tree (tuned) 0.79 0.79 0.63 0.55
Elastic net logistic regression 0.87 0.83 0.70 0.65
Unpenalized logistic regression 0.88 0.84 0.67 0.62
k-Nearest Neighbors classifier 0.89 0.92 0.66 0.65
LASSO logistic regression 0.87 0.83 0.70 0.65
Naive Bayes classifier 0.83 0.79 0.74 0.68
Random forest 0.89 0.87 0.73 0.59
SVM (linear kernel) 0.85 0.82 0.75 0.65
SVM (polynomial kernel) 0.83 0.79 0.74 0.67
SVM (RBF kernel) 0.83 0.82 0.74 0.69
Gradient-boosted tree 0.85 0.87 0.71 0.61

Abbreviations: AUROCC, Area Under the Receiver Operating Characteristic Curve; LASSO, Least Absolute Shrinkage and Selection
Operator; SVM, Support vector machines; CART, Classification and Regression Tree Algorithm.
Notes: The AUROCC was not estimable for the LASSO heuristic model on the validation set of clinician-reported symptom data, as
all patients were assigned the same score in this set.

E6 JABFM September–October 2023 Vol. 36 No. 5 http://www.jabfm.org

copyright.
 on 27 A

pril 2024 by guest. P
rotected by

http://w
w

w
.jabfm

.org/
J A

m
 B

oard F
am

 M
ed: first published as 10.3122/jabfm

.2023.230126R
1 on 29 S

eptem
ber 2023. D

ow
nloaded from

 

http://www.jabfm.org/


7.2 30%/70% Thresholds
We additionally recomputed the risk groups and stratum-specific statistics using thresholds of 30% and 70%

for both the patients (Online Appendix Table 9) and clinicians (Online Appendix Table 10). Increasing the
thresholds to be even higher should increase the number of patients in the low risk group, but may be difficult to
justify clinically.

The patient data models continued to exhibit the same problem: even with these high thresholds, the majority
of patients were classified as high risk, across all models and both samples. However, the differences from the
25% and 60% threshold analysis are minor. For the clinician data models, most models remained exactly the
same, with the exception of the Naive Bayes model on the derivation group. Each of the models only predicts a
discrete set of risk estimates, so if a change in the threshold does not reach the next discrete risk estimate, none of
the stratum-specific statistics will change.

Appendix Table 6. Risk Group Statistics for the Models Built Using the Clinician Data

Derivation group Validation group

Flu/Total (%) LR In Group (%) Flu/Total (%) LR In Group (%)

LASSO score
Low 0/18 (0.0) 0.0 10.3 3/9 (33.3) 0.5 11.8
Moderate 19/67 (28.4) 0.4 38.5 7/25 (28.0) 0.4 32.9
High 69/89 (77.5) 3.4 51.1 29/42 (69.0) 2.1 55.3

Conditional inference tree (manual)
Low 0/0 (NA) NA 0.0 0/0 (NA) NA 0.0
Moderate 9/58 (15.5) 0.2 33.3 8/24 (33.3) 0.5 31.6
High 79/116 (68.1) 2.1 66.7 31/52 (59.6) 1.4 68.4

Naive Bayes classifier
Low 4/36 (11.1) 0.1 20.7 1/9 (11.1) 0.1 11.8
Moderate 3/14 (21.4) 0.3 8.0 2/7 (28.6) 0.4 9.2
High 81/124 (65.3) 1.8 71.3 36/60 (60.0) 1.4 78.9

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; LR, Stratum-specific likelihood ratio.
Notes: The models were trained using the derivation set of clinician-reported symptom data, and evaluated on both the derivation
and validation sets separately. We obtained quantitative risk predictions for each individual from the models, and assigned individuals
with a risk less than 10% to the low risk group, individuals with a risk between 10% and 50% to the moderate risk group, and indi-
viduals with a risk greater than 50% to the high risk group.

Appendix Table 7. Risk Group Statistics for the Models Built Using the Patient Data

Derivation group Validation group

Flu/Total (%) LR In Group (%) Flu/Total (%) LR In Group (%)

Conditional inference tree (manual)
Low 3/43 (7.0) 0.1 24.7 8/22 (36.4) 0.5 28.9
Moderate 17/39 (43.6) 0.8 22.4 8/13 (61.5) 1.5 17.1
High 68/92 (73.9) 2.8 52.9 23/41 (56.1) 1.2 53.9

Naive Bayes classifier
Low 0/2 (0.0) 0.0 1.1 0/0 (NA) NA 0.0
Moderate 0/10 (0.0) 0.0 5.7 0/5 (0.0) 0.0 6.6
High 88/162 (54.3) 1.2 93.1 39/71 (54.9) 1.2 93.4

LASSO score
Low 5/41 (12.2) 0.1 23.6 7/23 (30.4) 0.4 30.7
Moderate 20/49 (40.8) 0.7 28.2 9/12 (75.0) 2.8 16.0
High 63/84 (75.0) 2.9 48.3 23/40 (57.5) 1.2 53.3

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; LR, stratum-specific likelihood ratio.
Notes: We assigned risk groups using a 25% testing threshold and a 60% treatment threshold.
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7.3 Continuous Risk Estimates
Overall, while varying the thresholds did assign more patients to the low and moderate risk groups, with both

of our trials, the majority of patients were still assigned to the high risk group. This can be explained by examin-
ing the quantitative risk predictions made by the models without binning the estimates into groups.

Online Appendix Figure 4 shows histograms of the predicted risk for each model. The point score and tree
models both produce a sparse set of discrete risk outcomes, so varying the threshold does not affect categoriza-
tions until the next measurement is crossed. While the naive bayes model has a larger set of possible outcomes,
most of the predictions were close to a risk of 1.

We could arbitrarily choose even higher thresholds to attempt to improve the model metrics, or we could
computationally optimize the stratum-specific likelihood ratios by choosing threshold values. But it is unlikely
that such data-driven threshold choices would be contextually meaningful or robust across multiple studies.
Examining model calibration on the continuous risk estimates would be more revealing than optimizing thresh-
olds for categorizing a continuous variable.

Appendix Table 9. Risk Group Statistics for the Models Built Using the Patient Data

Derivation group Validation group

Flu/Total (%) LR In Group (%) Flu/Total (%) LR In Group (%)

Conditional inference tree (manual)
Low 7/57 (12.3) 0.1 32.8 11/26 (42.3) 0.7 34.2
Moderate 13/25 (52.0) 1.1 14.4 5/9 (55.6) 1.2 11.8
High 68/92 (73.9) 2.8 52.9 23/41 (56.1) 1.2 53.9
Naive Bayes classifier
Low 0/3 (0.0) 0.0 1.7 0/1 (0.0) 0.0 1.3
Moderate 0/17 (0.0) 0.0 9.8 1/6 (16.7) 0.2 7.9
High 88/154 (57.1) 1.3 88.5 38/69 (55.1) 1.2 90.8
LASSO score
Low 5/41 (12.2) 0.1 23.6 7/23 (30.4) 0.4 30.7
Moderate 20/49 (40.8) 0.7 28.2 9/12 (75.0) 2.8 16.0
High 63/84 (75.0) 2.9 48.3 23/40 (57.5) 1.2 53.3

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; LR, Stratum-specific likelihood ratio.
Notes: We assigned risk groups using a 30% testing threshold and a 70% treatment threshold.

Appendix Table 8. Risk Group Statistics for the Models Built Using the Clinician Data

Derivation group Validation group

Flu/Total (%) LR In Group (%) Flu/Total (%) LR In Group (%)

Conditional inference tree (manual)
Low 9/58 (15.5) 0.2 33.3 8/24 (33.3) 0.5 31.6
Moderate 32/58 (55.2) 1.2 33.3 14/26 (53.8) 1.1 34.2
High 47/58 (81.0) 4.2 33.3 17/26 (65.4) 1.8 34.2

Naive Bayes classifier
Low 5/42 (11.9) 0.1 24.1 1/13 (7.7) 0.1 17.1
Moderate 8/15 (53.3) 1.1 8.6 4/8 (50.0) 0.9 10.5
High 75/117 (64.1) 1.7 67.2 34/55 (61.8) 1.5 72.4

LASSO score
Low 7/58 (12.1) 0.1 33.3 8/24 (33.3) 0.5 31.6
Moderate 12/28 (42.9) 0.7 16.1 2/11 (18.2) 0.2 14.5
High 69/88 (78.4) 3.5 50.6 29/41 (70.7) 2.3 53.9

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; LR, Stratum-specific likelihood ratio.
Notes: We assigned risk groups using a 25% testing threshold and a 60% treatment threshold.
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8. R Session and Package Information
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10�64 (build 19045)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE¼English United States.utf8
## [2] LC_CTYPE¼English United States.utf8
## [3] LC_MONETARY¼English United States.utf8
## [4] LC_NUMERIC¼C

Appendix Table 10. Risk Group Statistics for the Models Built Using the Clinician Data

Derivation group Validation group

Flu/Total (%) LR In Group (%) Flu/Total (%) LR In Group (%)

Conditional inference tree (manual)
Low 9/58 (15.5) 0.2 33.3 8/24 (33.3) 0.5 31.6
Moderate 32/58 (55.2) 1.2 33.3 14/26 (53.8) 1.1 34.2
High 47/58 (81.0) 4.2 33.3 17/26 (65.4) 1.8 34.2

Naive Bayes classifier
Low 5/45 (11.1) 0.1 25.9 1/13 (7.7) 0.1 17.1
Moderate 8/18 (44.4) 0.8 10.3 4/8 (50.0) 0.9 10.5
High 75/111 (67.6) 2.0 63.8 34/55 (61.8) 1.5 72.4

LASSO score
Low 7/58 (12.1) 0.1 33.3 8/24 (33.3) 0.5 31.6
Moderate 12/28 (42.9) 0.7 16.1 2/11 (18.2) 0.2 14.5
High 69/88 (78.4) 3.5 50.6 29/41 (70.7) 2.3 53.9

Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; LR, Stratum-specific likelihood ratio.
Notes: We assigned risk groups using a 30% testing threshold and a 70% treatment threshold.

Appendix Figure 4. Histograms of individual risks predicted by the models (shown on the left side). Bins repre-

sent a width of 5%. Across all models, patients were more often assigned a high risk, and most patients who

were at high risk were assigned the same or very close risk estimates.
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## [5] LC_TIME¼English United States.utf8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] zlib_0.0.1 renv_0.16.0 gtsummary_1.6.2 tidyselect_1.2.0
## [5] dplyr_1.0.10 readr_2.1.3 here_1.0.1 flextable_0.8.3
## [9] knitr_1.41 bookdown_0.31 rmarkdown_2.19
##
## loaded via a namespace (and not attached):
## [1] xfun_0.36 purrr_1.0.1 colorspace_2.1-0
## [4] vctrs_0.5.1 generics_0.1.3 htmltools_0.5.4
## [7] yaml_2.3.6 base64enc_0.1 to 3 utf8_1.2.2
## [10] rlang_1.0.6 pillar_1.8.1 glue_1.6.2
## [13] withr_2.5.0 DBI_1.1.3 gdtools_0.2.4
## [16] uuid_1.1-0 lifecycle_1.0.3 stringr_1.5.0
## [19] munsell_0.5.0 gtable_0.3.1 zip_2.2.2
## [22] evaluate_0.19 tzdb_0.3.0 fastmap_1.1.0
## [25] fansi_1.0.3 Rcpp_1.0.9 scales_1.2.1
## [28] openssl_2.0.5 systemfonts_1.0.4 ggplot2_3.4.0
## [31] hms_1.1.2 askpass_1.1 digest_0.6.31
## [34] stringi_1.7.12 grid_4.2.2 rprojroot_2.0.3
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