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Introduction: Unhealthy drinking is prevalent in the United States, and yet it is underidentified and
undertreated. Identifying unhealthy drinkers can be time-consuming and uncomfortable for primary
care providers. An automated rule for identification would focus attention on patients most likely to
need care and, therefore, increase efficiency and effectiveness. The objective of this study was to build
a clinical prediction tool for unhealthy drinking based on routinely available demographic and labora-
tory data.

Methods: We obtained 38 demographic and laboratory variables from the National Health and
Nutrition Examination Survey (1999 to 2016) on 43,545 nationally representative adults who had in-
formation on alcohol use available as a reference standard. Logistic regression, support vector
machines, k-nearest neighbor, neural networks, decision trees, and random forests were used to build
clinical prediction models. The model with the largest area under the receiver operator curve was
selected to build the prediction tool.

Results: A random forest model with 15 variables produced the largest area under the receiver op-
erator curve (0.78) in the test set. The most influential predictors were age, current smoker, hemoglo-
bin, sex, and high-density lipoprotein. The optimum operating point had a sensitivity of 0.50,
specificity of 0.86, positive predictive value of 0.55, and negative predictive value of 0.83. Application
of the tool resulted in a much smaller target sample (75% reduced).

Conclusion: Using commonly available data, a decision tool can identify a subset of patients who
seem to warrant clinical attention for unhealthy drinking, potentially increasing the efficiency and
reach of screening. ( J Am Board Fam Med 2020;33:397–406.)

Keywords: Alcohol Drinking, Alcoholism, Area Under Curve, Clinical Decision Rules, Decision Trees, Logistic

Models, Machine Learning, Neural Networks (Computer), Nutrition Surveys, Support Vector Machine

Introduction
An estimated 27% of adults in the United States
drink alcohol at a level considered unhealthy,1

which is defined as consuming ≥1 drink per day for
women or ≥2 for men or binge drinking (consum-
ing ≥4 drinks on the same occasion for women or

≥5 for men) at least once in the past year.2

Consuming more than the recommended amount
of alcohol is a major risk factor for health and social
issues, injuries, accidents, and early death.3–5

Unhealthy drinking has been associated with can-
cer, pancreatitis, liver disease, psychopathology,
sleep problems, hypertension, and other serious dis-
eases,6–10 costing the United States $249 billion in
2010.11 Moreover, 88,000 deaths are attributable to
consuming unhealthy levels of alcohol each year,12

making it the third leading preventable cause of
death in the United States behind tobacco use and
poor diet/lack of exercise.

The United States Preventive Services Task
Force recommends screening for unhealthy
drinking among adults ages 18 and older,13 and
valid screening tools such as the Alcohol Use
Disorders Identification Test (AUDIT),14 AUDIT-
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Consumption,15 and the Single Alcohol Screening
Question16 exist for this purpose.

Primary Care Providers (PCPs) have an impor-
tant role in identifying people with unhealthy
drinking; yet, screening rates in primary care are
low. In a representative survey of the US popula-
tion, only 25% reported having been screened for
alcohol use in the last year.17 Barriers to screening
include lack of time and administrative support,
need for modifications to office workflow, lack of
training for PCPs, the stigma associated with alco-
hol misuse, and the fact that universal screening will
not be applicable to the majority of patients.18–20

Efforts to impose universal screening through the
use of electronic clinical reminders and/or perform-
ance measures have improved screening rates in
some health care systems but are inconsistently
used and can be hampered by low clinical staff
buy-in.21,22

An alternative approach is a clinical prediction
rule, which can automatically identify patients most
likely to have unhealthy drinking, thereby reducing
the burden on PCPs and staff. Previous research has
shown that clinical prediction rules using prospec-
tively collected data can successfully identify unheal-
thy drinking. Hartzet al23 used logistic regression
and 40 laboratory values to distinguish 426 heavy
drinkers from 188 light drinkers. Lichtensteinet al24

used linear regression plus clinical and laboratory
values to predict heavy drinking. Harasymiwet
al25,26 used discriminant function analysis to predict
patient-reported alcohol use from a set of blood
chemistry profiles. Korzec and colleagues27 built a
predictive test for unhealthy drinking based on labo-
ratory values and a clinical questionnaire using
Bayesian networks. However, the generalizability of
these studies is limited by small sample sizes and
highly selected populations. Furthermore, question-
naires or prospective data collection offer little
advantage over universal screening. Finally, neither
logistic regression nor discriminant function analysis
accommodate missing values, which are common in
clinical data.

Clinical prediction rules using large, existing
datasets and machine learning methods are gaining
momentum in the medical literature and have been
used to predict poststroke mortality,28 in-hospital
mortality,29 peripheral artery disease and future mor-
tality risk,30 infection in the emergency depart-
ment,31 and mortality among colon cancer patients,32

to mention a few.

The purpose of this study was to build a clinical
prediction rule for unhealthy drinking based on
routinely collected demographic, clinical, and labo-
ratory data and to compare its performance to a
universal screening strategy. We hypothesized that
a clinical prediction rule could discriminate patients
with greater likelihood of unhealthy drinking from
those with a low probability of unhealthy drinking
who would not require further evaluation. The
population of patients needing further evaluation
would, therefore, be smaller and have a higher
prevalence of unhealthy drinking and have a greater
yield from additional evaluations. In this way, a pre-
diction rule could save time and clinical resources,
relieving providers from a function that is challeng-
ing to implement reliably.16,18,19,33

Materials and Methods
Data Source

Ideally, a clinical prediction model should be devel-
oped in the context in which it is intended to be
used, based on data available in that context.
However, drinking data are inconsistently recorded
in electronic health records (EHRs). Therefore, to
test our hypothesis that a machine learning approach
could be used to build a model for identifying
unhealthy drinking, we used a dataset that reliably
collected drinking data from each patient.

We obtained deidentified demographic, clinical,
and laboratory information on 43,545 nationally
representative adults from the National Health and
Nutrition Examination Survey (NHANES) from
1999 to 2016. To be included, the records needed
responses to the alcohol questions to be used as a
reference standard. Individuals younger than 18
years did not receive these questions. Demographic
and clinical variables included age, sex, smoking sta-
tus, height, weight, systolic and diastolic blood
pressure, and resting heart rate. Laboratory data
included 30 variables from routine clinical chemis-
tries and hemograms (see Table 1). These variables
were selected based on prior literature, clinical
judgment, and the likelihood that the candidate
predictor would be available in routine medical
records.23,34,35 Drinking data were used to classify
patients as having either unhealthy drinking or low-
risk drinking. Unhealthy drinking was defined by
≥1 drink per day for women or ≥2 for men or binge
drinking ≥1 per month in the past 12 months (≥4
drinks on the same occasion for women or ≥5 for
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Table 1. Characteristics of the Cohort Stratified by Unhealthy Drinking Status

Demographic Information

Reference Group

P Value*
Unhealthy Drinkers

(n = 11,464), % or Median
Low-Risk Drinkers

(n = 32,081), % or Median

Sex, male† 67% 42% <0.001
Smoking, current† 36% 15% <0.001
Age, years† 38 53 <0.001
Clinical Information
Height, cm 171.2 165.4 <0.001
Weight, kg 80 77.3 <0.001
Systolic blood pressure, mm Hg† 120 122 <0.001
Diastolic blood pressure, mm Hg 72 70 <0.001
Resting pulse rate, 60-second count 72 72 0.13

Chemistry
Calcium, mg/dL 9.4 9.4 <0.001
Chloride, mmol/L 104 104 <0.001
Phosphorus, mg/dL 3.7 3.7 <0.001
Potassium, mmol/L 4 4 0.006
Sodium, mmol/L 139 139 <0.001
Blood urea nitrogen, mmol/L† 4.3 4.6 <0.001
Creatinine, mg/dL† 0.86 0.82 <0.001
Bicarbonate, mmol/L 25 25 <0.001
Glucose, mg/dL 90 93 <0.001
Uric acid, mg/dL† 5.6 5.2 <0.001
Serum osmolality, mOsm/kg 277 278 <0.001

Liver function
Bilirubin, mg/dL 0.7 0.6 <0.001
Alanine aminotransferase, U/L 23 20 <0.001
Aspartate aminotransferase, U/L 24 23 <0.001
Alkaline phosphatase, U/L 65 68 <0.001
Gamma-glutamyl transpeptidase, U/L† 23 19 <0.001
Lactate dehydrogenase, U/L† 124 130 <0.001
Protein, g/dL 7.2 7.2 <0.001
Albumin, g/L† 44 42 <0.001

Hematology
Hemoglobin, g/dL† 14.8 13.9 <0.001
Hematocrit, %† 43.4 41.2 <0.001
Mean corpuscular volume, fL† 90.5 89.8 <0.001
Mean cellular hemoglobin, pg† 30.9 30.5 <0.001
Red blood cell distribution width, % 12.6 12.9 <0.001
White blood cell count, 1000/mL 7.1 6.9 <0.001
Platelet count, 1000/mL 8.1 8.1 <0.001

Lipids
Total cholesterol, mg/dL 194 193 0.25
High density lipoprotein, mg/dL† 51 50 <0.001
Calculated low density lipoprotein, mg/dL 110 111.4 0.002
Triglyceride, mg/dL 118 121 0.18

*P value determined by x2 or Wilcoxon rank-sum test. Because the rank-sum tests considers the entire distribution of each group, it
can detect statistically significant differences even when the medians are identical.
†Variables included in final prediction model.
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men). Individuals not meeting criteria for unhealthy
drinking were classified as low risk. This category
includes nondrinkers.

The data were randomly split into 3 independent
sets: a training set (65%) for initial development of
the model, a validation set (15%) to evaluate the
initial model, and a test set (20%) to determine the
final fit of the model to the data. The test set was
stored separately until a final prediction algorithm
was created and ready to use. Univariate analyses
were performed to ensure the 3 random subsets
were similar.

Model Development and Selection

Six candidate machine learning methods were eval-
uated to determine the most appropriate approach
to use for building a clinical prediction rule with
this dataset. Logistic regression,36 support vector
machines,37 neural networks,38 k-nearest neigh-
bors,39 decision trees,40 and random forests41 were
used individually to create clinical prediction rules
for unhealthy drinking using the training set. These
methods were chosen based on prior literature42,43

and because they each have unique advantages and
disadvantages for classification (Appendix). Each
method was tuned to maximize prediction in the
training data using all 38 variables. The decision
tree and random forest methods used techniques to
extract information from missing values. Essentially,
missing data were counted as another level or value
of the variable. All resulting clinical prediction rules
were run against the validation dataset, and the 1
with the largest area under the receiver operating
characteristic curve (AUC)44 (the random forest)
was selected as the target for further evaluation.
Variables with an information gain of less than 2%
(a measure of importance of each variable in predict-
ing unhealthy drinking) were removed to create a
more parsimonious and reproducible clinical predic-
tion rule.45

Model Performance

We calculated the performance of the clinical pre-
diction rule in the test set at various thresholds
(estimated probabilities of unhealthy drinking),
forming a receiver operating characteristic curve.
Performance parameters included accuracy, sensi-
tivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and workload
improvement (“savings”). An operating threshold
was chosen to optimize these values, with priority

given to specificity over sensitivity. Accuracy was
calculated as the number of correctly classified
patients (true positives 1 true negatives) divided by
the total population. The improvement in screen-
ing workload attributable to the clinical prediction
rule (“savings”) was calculated as (1 � the positivity
rate) and represents the reduction in the fraction of
patients needing evaluation when using the predic-
tion rule compared with the universal screening
approach (100% evaluated).

Data management and statistical analyses were
performed using Stata version 15 (Stata Co-
rporation, College Station, TX), JMP Pro version 13
(SAS Institute Inc., Cary, NC), and Python version
3.6 (Python Software Foundation, Wilmington,
DE). The University of Vermont Committees on
Human Subjects determined that the study did not
constitute human subjects research.

Results
Overall, the prevalence of unhealthy drinking was
26%. The 43,545 records were randomly assigned
to training (n = 28,262), validation (n = 6474), and
test (n = 8809) sets. There were no significant dif-
ferences among the 3 sets for any of the 38 varia-
bles. A total of 6% of values were missing and 23%
of records were missing at least 1 variable.

Table 1 shows demographic and laboratory values
by the reference drinking status (unhealthy versus
low risk). On average, respondents in the unhealthy
drinking category consumed 4.1 drinks per drinking
day. In contrast, low-risk adults (including abstainers)
had 1.5 drinks per drinking day. Individuals with
unhealthy drinking were more likely to be younger,
male, and current cigarette smokers. Although the
differences in many clinical and laboratory values
were statistically significant, they were small and
unlikely to be clinically important.

Table 2 shows a comparison of the AUCs of the
various methods across the training, validation, and
test sets and the performance parameters for each
model in the validation set. The random forest
model produced the largest AUC in both the train-
ing set (0.85) and the validation set (0.80) and out-
performed the other machine learning methods in
sensitivity, specificity, PPV, NPV, overall accuracy,
and savings in the validation set (see Figure 1). The
random forest model was used to build the final
clinical prediction rule. It was the only method
used in the final test set.
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After selecting random forest as the final
method, variables that contributed an information
gain of<2% were dropped to create the most parsi-
monious model, ultimately including only 15/38
variables. The final model included the following
predictors: age, current smoker, hemoglobin, sex,
high-density lipoprotein, hematocrit, g-glutamyl
transpeptidase, mean cellular hemoglobin, uric
acid, albumin, lactate dehydrogenase, mean corpus-
cular volume, systolic blood pressure, creatinine,
and blood urea nitrogen (Table 3).
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Figure 1. Random Forest AUC for training, validation,

and test sets. Abbreviations: AUC, area under the re-

ceiver operating characteristic curve.

Table 3. Information Gain of Variables Used in the

Final Prediction Model

Reference Group Information Gain (%)

Age 28.1
Current smoker 10.7
Hemoglobin 7.7
Sex 7.3
High density lipoprotein 6.3
Hematocrit 6.0
Gamma-glutamyl transpeptidase 5.4
Mean cellular hemoglobin 4.8
Uric acid 4.4
Albumin 3.7
Lactate dehydrogenase 3.2
Mean corpuscular volume 3.2
Systolic blood pressure 3.1
Creatinine 3.1
Blood urea nitrogen 3.0
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Compared with the presumed effects of universal
screening (all patients are screened and all instances
of unhealthy drinking are identified), the clinical
prediction rule finds fewer unhealthy drinkers but
at a much lower cost (see Figure 2). At a prevalence
of 26% and at the optimum operating point, the
clinical prediction rule has a sensitivity of 0.50,
requiring that only 25% of the population undergo
further evaluation (see Table 2). The PPV of 0.55
indicates that 55% of them are identified as having
unhealthy drinking, compared with 26% of all
patients identified with universal screening. By
eliminating 75% of the population with a relatively
low risk of unhealthy drinking, the model increases
the prevalence of unhealthy drinking in the identi-
fied group and lowers the number assessed from
43,345 to 10,886 in this population.

With the same prediction rule, the operating
point could be shifted along the receiver operating
characteristic curve to prioritize sensitivity. For
example, an alternate operating point prioritizing
sensitivity could produce a sensitivity of 0.88, speci-
ficity of 0.49, PPV of 0.38, and NPV of 0.92.
However, 61% of the population (n = 26,562)
would need to be evaluated.

Discussion
We used commonly available laboratory, clinical,
and demographic information from a nationally
representative dataset to build a clinical prediction

rule for unhealthy drinking. The analysis, which
includes over 45,000 records, indicates that an auto-
mated tool can accurately identify unhealthy drink-
ing by using commonly available secondary data,
even with many missing values. Using a random
forest model, we were able to predict unhealthy
drinking with high specificity and modest sensitiv-
ity. Changing the operating point could allow for
high sensitivity and modest specificity, if that were
preferred. Random forest outperformed logistic
regression and the other machine learning
methods.

Prior studies on predicting unhealthy drinking
have used classic statistical techniques with small
data sets and limited computing power23,25–27,46

compared with more modern methods. These pro-
spective studies had control over the recruitment
process and the ability to minimize missing data,
which may have helped their prediction results. In
contrast, the current study used a large existing
dataset and analytical methods that accounted for
missing data.

In the curated NHANES dataset, individual val-
ues were missing less than 5% of the time, but in
EHRs, we would expect many more missing values.
Some machine learning methods, especially ran-
dom forest, consider and use missing data to create
the most robust model.47 Because all clinical data
sources, including EHRs, have gaps, it is important
that clinical prediction rules can account for miss-
ing data.

Figure 2. Population effect of using the clinical prediction rule to identify unhealthy drinking compared with uni-

versal screening. Abbreviations: NHANES, National Health and Nutrition Examination Survey; AUDIT-C, Alcohol

Use Disorders Identification Test – alcohol consumption questions.
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We tested logistic regression and multiple
machine learning methods on the training and vali-
dation sets. Random forest outperformed all other
methods, likely because it is particularly robust to
outliers, missing data, and nonlinear relationships.41

Although logistic regression is widely used in binary
classification problems,48 results in the medical lit-
erature are inconclusive about whether logistic
regression can predict as well as machine learning
methods.28,29 A recent systematic review by
Christodoulou et al49 found no performance benefit
of machine learning methods over logistic regres-
sion. However, logistic regression, and other meth-
ods that cannot handle missing data, are not
practical in a clinical setting because users would ei-
ther need to impute the missing data before apply-
ing the rule or abandon prediction for many cases.
In the NHANES data, a particularly well-groomed
dataset, only 77% of records had complete data.
The choice of model for medical domains should
be selected based on the problem to be solved; the
understanding of the underlying biological, psycho-
logical, and social mechanisms; and the data avail-
able, rather than just whether the domain is
medical or not.

The predictors of unhealthy drinking in the final
model are biologically plausible and supported by the
literature. Age, sex, smoking, and unhealthy drinking
have been shown to be strongly correlated.1,50

Alcohol use is associated with increased levels of
high-density lipoprotein, reportedly through an
increased transport rate of apolipoproteins A-I and
A-II.34 Others have used mean corpuscular volume,
hemoglobin, g-glutamyl transpeptidase, albumin,
and systolic blood pressure in prediction models for
heavy drinking.23–25 Despite race and ethnicity
being associated with alcohol use, they were
removed a priori due to common misclassification
problems, especially in EHR data.51 To create the
most parsimonious model, the random forest algo-
rithm removed potential predictors that have a min-
imal effect on performance.

Universal screening results in many low-risk
patients being offered an unnecessary intervention
that PCPs are already reluctant to provide,16,18,19,33

This clinical prediction rule prioritizes specificity
over sensitivity and identifies patients who are likely
to truly be drinking at an unhealthy level.
Therefore, the population appropriate for follow-
up assessment is greatly reduced compared with
universal screening, freeing up time and resources.

The trade-off is that some patients with unhealthy
drinking are incorrectly categorized as low risk,
missing an opportunity to intervene. If the setting
warrants, the model can operate at a higher sensi-
tivity, with correspondingly lower specificity.

This study has limitations. First, the NHANES
sample is meant to be representative of the general
population of adults in the United States, which
may be different from those seeking primary care.
The study population undoubtedly included some
adults who would not be subjects for screening
because, for example, they had a previously diag-
nosed alcohol use disorder. Second, the NHANES
data may not be representative of EHR data, which
would be used in practice. EHRs are likely to have
much more missing data. However, random forest
models are robust to missing data. Third,
NHANES questionnaires were administered in
person, possibly introducing social desirability
response bias.52 Therefore, alcohol and tobacco use
may be underreported compared with self-report
articles or electronic questionnaires. Because smok-
ing was an important predictor in the model and
alcohol use is the outcome, inaccurate reporting
could result in misclassification. Nonetheless, self-
report is the typical method for assessing smoking
status and alcohol use in health care settings.
Fourth, the prediction rule is not very transparent.
Notably, it offers no single estimate of the relation-
ship between any predictor and the outcome analo-
gous to the odds ratio from a regression. A single
predictor may seem to be harmful in some sub-
groups of patients and protective in others. Finally,
we believe that this analysis overestimates the per-
formance of universal screening because it assumes
that all patients would be screened. In fact, a rela-
tively low fraction of primary care patients are rou-
tinely screened with a validated tool such as the
AUDIT.17

Conclusions

Motivated by critical barriers facing PCPs in identi-
fying unhealthy drinking, we describe an alternative
approach to routine universal screening: a clinical
prediction rule based on existing data. This method
could reduce the burden on PCPs and allow them
to focus their attention on those who need it most.
The virtue of the clinical prediction rule is not that
it is perfectly accurate but that it is fast, inexpensive,
unobtrusive, and identifies a subset of patients at a
higher risk of unhealthy drinking.
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Appendix. Selected Machine Learning Methods for Classification of Unknown Cases into Mutually Exclusive

Categories

Method Advantage Disadvantage

Random forest • Low computational cost
• Uses missing data to inform model
• Can handle large number of records and variables
• Provides estimates of the information gained by each

input variable
• Works well with nonlinear data

• Not ideal for rare outcomes
• Very difficult to interpret individual variable

contributions to classification
• Time consuming hyperparameter tuning
• Overfitting of data

Support Vector
Machines

• Low computationally cost
• Effective when number of variables> number of

records (very wide data)

• Need a clear margin of separation between
outcomes (unhealthy drinking vs low-risk)

• Time consuming hyperparameter tuning
• Not efficient with large number of records

Neural
Networks

• Works well with nonlinear data • High computational cost during training
• Extremely useful with large number of predictors

(high dimensionality (e.g. image data))
• Time consuming hyperparameter tuning

• Any numeric data can be used • Need relatively large number of records for training
set

• Very difficult to interpret individual variable
contributions to classification

• Must have many records per variable
• Overfitting of data

K-nearest
neighbors

• Very simple construction requiring minimal
specifications (a.k.a. hyperparameters)

• Intuitive methodology

• High computational cost
• Challenging with large number of variables (wide

data)
• Cannot handle imbalanced data
• Very sensitive to outliers
• Cannot handle missing data

Decision Trees • Can handle missing data • Highly biased to training set
• No data preprocessing needed
• Provides highly intuitive explanation over the

prediction

• Relatively inaccurate compared to other models

Logistic
Regression

• Common and understood by most • Proper selection of features is required
• Relatively easy to implement • Cannot handle missing data
• Loss function is always convex • Needs data preprocessing and handling to cover

non-linear data
• Cannot handle large number of categorical

predictors
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