Hypertension in a Population of Active Duty Service Members

Brian A. Smoley, MD, MPH, Nicholas L. Smith, PhD, and Guy P. Runkle, MD, MA

Background: Hypertension is a common condition, but little is known about its prevalence in the Armed Forces. Our purpose was to provide an estimate of the prevalence of hypertension in a large population of US service members.

Methods: We reviewed the screening records for service members who completed health risk assessments at Fort Lewis in Tacoma, WA, in 2004. The prevalence of hypertension and prehypertension were estimated from single recorded blood pressure readings and subjects’ reported use of blood pressure medications. Study subject characteristics associated with hypertension and prehypertension were examined by χ² tests and multivariate logistic regression.

Results: Thirteen percent of the 15,391 subjects met the study definition for hypertension; 62% met the study definition for prehypertension. Increasing age and body mass index, male sex, black race/ethnicity, and senior rank were associated with hypertension; only body mass index, male sex, and senior rank were associated with prehypertension.

Conclusion: Hypertension and prehypertension are more prevalent in the US Armed Forces than has been previously reported, and prehypertension may be more common in the US Armed Forces than in the general population. The high prevalence of prehypertension found in this young, fit population suggests a need to better define the risks and benefits associated with the diagnosis and treatment of prehypertension in low-risk populations. (J Am Board Fam Med 2008;21:504–11.)
mate of the prevalence of hypertension and distribution of blood pressures in a multiethnic population of male and female active duty US service members in a manner accounting for both recognized and unrecognized cases.

Methods
Selection and Description of Participants
The I Corps Readiness and Outcomes Wellness Service (ICROWS) at Madigan Army Medical Center conducts health risk assessments on all active duty service members stationed at Fort Lewis in Tacoma, WA. These assessments are performed annually and within 30 days of a deployment from Fort Lewis. After approval by the Institutional Review Board at Madigan Army Medical Center and the Human Subjects Review Committee at the University of Washington in Seattle, WA, we used a retrospective cross-sectional analysis of data that had been collected during these health risk assessments. All active duty service members (including active National Guard and Reserve) aged 17 to 65 years who completed the health risk assessment between January 1, 2004, and December 31, 2004, were included in the study.

Technical Information
The Health Risk Appraisal survey (DA Form 5675, 1 Feb 92) was administered as a part of the health risk assessment.8,9 The survey collected self-reported information on rank, racial/ethnic background, sex, age, height, weight, and use of medicine for high blood pressure. It also included the recording of a single unaveraged blood pressure measurement taken by trained medical personnel at the time of the health risk assessment. Standardized operating procedures stipulated that the subjects’ blood pressure measurements were taken with a calibrated automated sphygmomanometer after they had been seated for 5 minutes and at least 30 minutes after they had last smoked, exercised, or ingested caffeine.10 If the blood pressure was \(\geq 140/90 \) mm Hg, a second reading was taken using the same instrument. An automated reading of \(<140/90 \) mm Hg was recorded. Persistently elevated automated measurements prompted manual measurements in both arms. The higher of the 2 manual measurements was then recorded.

Analyses
Subjects were defined as having hypertension if their systolic blood pressure was at least 140 mm Hg, their diastolic blood pressure was at least 90 mm Hg, or they had reported taking medicine for high blood pressure. Hypertension was considered to be treated if subjects reported using a medicine for high blood pressure. Classification into specific blood pressure categories was based on recorded blood pressures using criteria established in the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC 7) (ie, normal: \(<120/80 \) mm Hg, prehypertension: 120–139/80–89 mm Hg, stage 1 hypertension: 140–159/90–99 mm Hg, and stage 2 hypertension: \(\geq 160/100 \) mm Hg).11

Subjects’ reported rank was used as a marker for socioeconomic status. Although rank is related to both education level and income, the relationships are not linear across the entire rank structure. Rank was thus dichotomized into the 2 socioeconomic groups of Junior Enlisted (E-1 to E-4) and Senior Rank [all others: senior enlisted (E-5 to E-9), warrant officers (WO-1 to WO-4), and commissioned officers (O-1 to O-10)] in a manner consistent with a previous analysis.12 The 8 racial/ethnic background categories from the Health Risk Appraisal survey were collapsed into 4 categories to facilitate statistical analysis and maintain consistency with other categorization schemes.1,2,13 Subjects who identified a background of white Hispanic or black Hispanic were categorized as Hispanic. Those who identified a background of American Indian or Alaska native, Asian/Oriental, Pacific Islander, or other were categorized as other. Those who identified themselves as non-Hispanic white or non-Hispanic black were categorized as white and black, respectively. Age was categorized into 3 groups (17 to 24, 25 to 39, and 40 to 65 years). Body mass index was calculated by dividing the weight (in kilograms) by the square of the height (in meters).

Statistical analyses were performed using SPSS software.14 The prevalence of hypertension by age groups, sex, race/ethnicity, and rank was tested by \(\chi^2 \) and \(\chi^2 \) for trend tests. Multivariate logistic regression models were used to test for independent associations between study subject characteristics (age, body mass index, race/ethnicity, rank, and sex) and hypertension and prehypertension. Age adjustments of prevalence to the 2000 US Standard Pop-
ulation used a population age range of 18 to 59 years broken down into 10-year increments. The sensitivity of the prevalence of hypertension and prehypertension to a transient increase in subjects’ blood pressures (possibly reflecting a white coat-like effect) at the time of measurement was tested by reducing the values of recorded blood pressures in those with pre- and stage 1 hypertensive readings by 7/4 mm Hg (the approximate value of the white coat effect in stage 1 hypertensives).

Results

15,391 of 15,735 eligible service members (98%) met inclusion criteria. Those excluded included 323 who were missing a blood pressure measurement, 19 who were missing a demographic variable, and 2 who were outside of the study’s age range. Population characteristics are presented in Table 1. The mean age in the study population was 28 years, the mean blood pressure was 127/69 mm Hg, and the mean body mass index was 25.5 kg/m². Two percent of subjects reported using medicine for high blood pressure. The majority were males and 40 years of age. The race/ethnicity group “Hispanic” included 2050 subjects (83%) who more specifically identified themselves as white Hispanic and 417 (17%) who identified themselves as black Hispanic. The race/ethnicity group “other” included 290 American Indians or Alaska natives (13%), 704 Asians/Orientals (31%), and 378 Pacific Islanders (17%).

The prevalence of hypertension (as defined for this study) was 13% overall and 11% in those <40 years of age (Table 2). Hypertension was more common in older age groups, men, blacks, and those in the senior ranks. The age-adjusted prevalence of hypertension was 21% for men and 15% for women. Hypertension was treated in 285 (1.9%) of all cases, 124 (8%) of cases in subjects <40 years of age, and 161 (37%) of cases in subjects 40 to 65 years of age, yielding treated hypertension prevalences of 2% overall, 1% in those <40 years of age, and 10% in those 40 to 65 years of age.

Multivariate logistic regression showed age, body mass index, male sex, black race/ethnicity, and senior rank to be independently associated with an increased odds of having hypertension (Table 3). Rank and age were noted to be only moderately correlated with each other (Spearman’s rank coefficient = 0.65).

The distribution of blood pressures for the 15,106 subjects who did not report taking medicine for high blood pressure is shown in Table 4. Prehypertension was the most prevalent blood pressure category (63%), followed by normal blood pressure (26%) and then stage 1 and stage 2 hypertension (10% and 1%, respectively). Multivariate logistic regression showed prehypertension to be...
independently associated with body mass index, male sex, and senior rank (P values < .01, < .01, and .01, respectively) but not age or race/ethnicity. Viewed as a portion of the entire study population, the 9560 of these subjects with prehypertensive blood pressure readings represent an unadjusted prevalence of prehypertension of 62% (64% in men and 47% in women). Adjusted for age, the prevalence of prehypertension was 62% for men and 48% for women.

A sensitivity analysis that decreased the observed blood pressure readings in those with pre- and stage 1 hypertensive readings by 7/4 mm Hg estimated the prevalence of hypertension and prehypertension after the removal of the white coat effect to be 6% and 48%, respectively (not age adjusted).

Discussion

With an overall prevalence of 13% and 62%, and a combined prevalence of 75%, hypertension and prehypertension were more common in our study than has been previously described in a military population. Our analysis is the first to provide an estimate of the prevalence of hypertension and a description of the distribution of blood pressure categories in a large population of US service members that is based primarily on recorded blood pressure readings. Earlier studies differed from our investigation in that they were designed to detect only recognized cases. One group of researchers at a Department of Defense medical treatment facility (MTF) used pharmacy records to estimate the prevalence of treated hypertension at 1.5% in their entire population, 0.8% in those < 40 years of age, and 10.0% in those > 40 years of age.6 Another group used the pharmacy and ambulatory data system records of a population of 40- to 89-year-old medical beneficiaries receiving care at a different MTF to estimate the prevalence of diagnosed hypertension to be 12.3%.7 An investigation of the entire US Army population revealed a prevalence

Table 2. Prevalence of Hypertension by Age Group Among Active Duty Service Members Stationed at Fort Lewis

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>17 to 24</th>
<th>25 to 39</th>
<th>40 to 65</th>
<th>All</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (%)</td>
<td>560 (7.9)</td>
<td>966 (14.5)</td>
<td>438 (27.2)</td>
<td>1964 (12.8)</td>
<td><.01</td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>534 (8.7)</td>
<td>914 (15.4)</td>
<td>395 (27.7)</td>
<td>1843 (13.7)</td>
<td><.01</td>
</tr>
<tr>
<td>Women</td>
<td>26 (2.7)</td>
<td>52 (7.0)</td>
<td>43 (23.6)</td>
<td>121 (6.4)</td>
<td><.01</td>
</tr>
<tr>
<td>P<.01</td>
<td>.01</td>
<td>.01</td>
<td>.02</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Race/ethnicity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>357 (8.5)</td>
<td>516 (13.6)</td>
<td>227 (25.2)</td>
<td>1100 (12.4)</td>
<td><.01</td>
</tr>
<tr>
<td>Black</td>
<td>63 (9.3)</td>
<td>176 (20.0)</td>
<td>75 (33.9)</td>
<td>314 (17.7)</td>
<td><.01</td>
</tr>
<tr>
<td>Hispanic</td>
<td>74 (6.2)</td>
<td>128 (12.5)</td>
<td>79 (31.0)</td>
<td>281 (11.4)</td>
<td><.01</td>
</tr>
<tr>
<td>Other</td>
<td>66 (6.3)</td>
<td>146 (14.9)</td>
<td>57 (24.5)</td>
<td>269 (11.9)</td>
<td><.01</td>
</tr>
<tr>
<td>P†</td>
<td>.01</td>
<td>.01</td>
<td>.02</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Rank (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior enlisted</td>
<td>453 (7.4)</td>
<td>264 (11.8)</td>
<td>35 (28.5)</td>
<td>752 (8.9)</td>
<td><.01</td>
</tr>
<tr>
<td>Senior rank</td>
<td>107 (10.8)</td>
<td>702 (15.8)</td>
<td>403 (27.1)</td>
<td>1212 (17.5)</td>
<td><.01</td>
</tr>
<tr>
<td>P†</td>
<td>.01</td>
<td>.01</td>
<td>.75</td>
<td><.01</td>
<td></td>
</tr>
</tbody>
</table>

*χ² comparisons within age groups.
×χ² test for trend across age categories.

Table 3. Associations Between Hypertension and Study Subject Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per 1-year increase)</td>
<td>1.04 (1.04 to 1.05)</td>
</tr>
<tr>
<td>Body mass index (per kg/m² increase)</td>
<td>1.13 (1.12 to 1.15)</td>
</tr>
<tr>
<td>Male</td>
<td>1.96 (1.61 to 2.39)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Black</td>
<td>1.52 (1.31 to 1.75)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.87 (0.75 to 1.00)</td>
</tr>
<tr>
<td>Other</td>
<td>0.99 (0.85 to 1.14)</td>
</tr>
<tr>
<td>Senior rank</td>
<td>1.23 (1.09 to 1.39)</td>
</tr>
</tbody>
</table>

*Odds ratio (OR) (95% CI) simultaneously adjusted for all characteristics.
of diagnosed hypertension of 2% overall, 1% to 2% in 17- to 39-year-olds, 7% in 40- to 65-year-old men, and 8% in 40- to 65-year-old women. All these findings are similar to the prevalence of treated hypertension in our study population (2% overall, 1% in 17- to 39-year-olds, and 10% in 40- to 65-year-olds). However, the results of our study suggest that the prevalence of all hypertension in US military populations is higher than what is reflected in the records of diagnoses or prescribed medications.

National surveys using measured blood pressures have yielded age-adjusted estimates of hypertension prevalence of 27% in men and 30% in women. The age-adjusted prevalence in our study population was 21% in men and 15% in women. Although probably more prevalent than previously reported, it seems as though hypertension is still less prevalent in the US Armed Forces than it is in the general US population. In contrast, prehypertension was more prevalent in our study population (age-adjusted prevalence of 62% for men and 48% for women) than has been estimated in the general US population (age-adjusted prevalence of 47% in men and 29% in women). Although prehypertension was associated with body mass index (BMI), adjusting for the lower BMI found in our study population [mean BMI of 25.5 kg/m² (Table 1) vs 27.8 kg/m² (see ref. 17)] would increase the prevalence in our study population relative to the US population, and therefore does not explain the higher prevalence of prehypertension.

It is therefore important to consider what biases might have been introduced as a result of the methods used by the ICROWS to collect the blood pressure data. The health risk assessments conducted on the study subjects included the recording of only one blood pressure measurement. As a comparison, JNC 7 and National Health and Nutrition Examination Survey (NHANES) procedures characterize individuals based on at least 2 measurements. It has been shown that the classification of individuals based on even just 2 measurements can lead to a significant overdiagnosis of hypertension. Classification based on one measurement would be expected to be at least as inaccurate.

A more significant source of error in this study, and the one that best explains any artificial inflation of the prevalence of prehypertension relative to national surveys, is the bias that was probably introduced by the selective recording of one out of as many as 4 blood pressure measurements that could have been taken during the subjects’ health risk assessments. There is a statistical tendency for extreme blood pressure readings to “regress toward the mean” such that repeat measurements in initially hypertensive individuals would generally be...
expected to be lower. Because blood pressure measurements were only repeated in those subjects who were initially hypertensive, a selection bias toward pre- and normotensive blood pressure values may have been introduced. This bias would have had the effect of increasing the observed prevalence of prehypertension while simultaneously decreasing the observed prevalence of hypertension.

It is also possible that there was something about the service members or the setting of the health risk assessment that introduced error through an artificial inflation of the measured blood pressures. The United States was engaged in active combat operations at the time that the data were collected. The annual health risk appraisal was completed in preparation for combat deployments for some of the individuals in the study. It is possible that some subjects completing the health risk appraisal during this time may have experienced some sort of “alarm reaction” similar to the one that has been found to occur in some patients during physician visits. This “alarm reaction” manifests as a transient increase in blood pressure and has been termed the “white coat effect.” Although its magnitude increases with the severity of hypertension, the impact of the white coat effect on the measured prevalence of hypertension is most pronounced in those with mild (ie, stage 1) disease. Because no estimation of the magnitude of the white coat effect in prehypertensives has been reported, the value reported for stage 1 hypertensives was conservatively applied to all pre- and stage 1 hypertensive readings in the sensitivity analysis. The prevalence of hypertension and prehypertension were both found to be sensitive to this adjustment (6% vs 13% for hypertension and 48% vs 62% for prehypertension), although prehypertension remained significantly prevalent.

The retrospective nature of our investigation has introduced a number of biases that may have lead to the overestimation of the prevalence of hypertensive disease in the study population. However, 2 of these biases had competing effects, and although accounting for a white coat-like effect decreased the observed prevalence, it did not normalize it. Therefore, our results nonetheless suggest that hypertension is more common in the military population than has been previously appreciated and that prehypertension may actually be more common than in the general US population.

The implications of this finding warrant careful consideration. Several studies have found prehypertension to be associated with an increased risk of developing overt hypertension, but most of these studies have been done in older populations. Two cohort studies that included younger subjects followed for as long as 8 years found that even young adults with prehypertension have an increased risk of developing hypertension. However, they may not face the same elevated risk of cardiovascular morbidity and mortality as has been found in older prehypertensives. The National Health Examination and Follow-up Study and NHANES II Mortality Study, 1992 provided up to 18 years of follow-up for large cohorts that included adults as young as 25 years of age at enrollment. Whereas the former demonstrated a 1.32-fold (95% CI, 1.05 to 1.65) increase in the risk of cardiovascular events in prehypertensive subjects, the latter revealed no significant increase in the risk of either all-cause or cardiovascular-related mortality that could be attributed to baseline prehypertension.

JNC 7 recommendations for the treatment of prehypertension in an average risk patient of any age are limited to lifestyle modifications, but the utility of this approach is debatable, particularly when considering a young population like the US Armed Forces. Lifestyle modifications are recommended because of their positive effect on blood pressure, incident hypertension, antihypertensive efficacy, and cardiovascular risk. One follow-up study has shown that dietary sodium reduction is associated with a decreased risk of cardiovascular disease over a period of 10 to 15 years. However, these results may not be reproducible in nonstudy settings, and the long-term effects of other lifestyle modifications on cardiovascular events have not been clearly established. Even if they were, the absolute cardiovascular risk for most young adults is already low, even in prehypertensives. This is not to say that prehypertension should be ignored in this demographic. Although their risk may be low while they are still young, they will age, at which point their risk for both hypertension and cardiovascular morbidity and mortality will increase. Although direct evidence for lifestyle changes in young adulthood may be lacking, it nonetheless seems appropriate to address them at this earlier time rather than waiting until later in life when a lifetime of destructive habits added to age and hy-
hypertensive disease has raised cardiovascular risk to the point where treatment is no longer a consideration, but rather a mandate.

Given the limitations imposed in our retrospective analysis of a previously collected database, the prevalence of hypertensive disease in the military population should be confirmed by prospective studies that use multiple blood pressure measurements as has been done in NHANES. Such studies should also assess service members’ dietary, smoking, and alcohol consumption habits to determine the feasibility and potential impact of lifestyle changes on blood pressure readings in this already lean and physically active population. These will set the stage for prospective assessments of the long-term benefits to be gained from the identification and treatment of hypertension and prehypertension in early adulthood. Until then, service members need to be educated and motivated to adopt healthy lifestyles, if not to decrease their cardiovascular risk now, then to decrease it in the future.

References

10. VA/DoD Evidence-Based Clinical Practice Guidelines Working Group, Veterans Health Administration, Department of Veterans Affairs, and Health Affairs, Department of Defense. Diagnosis and Management of Hypertension in the Primary Care Setting. Washington (DC): Office of Quality and Performance; 1999, 2004 (update).
33. Chiu YH, Wu SC, Tseng CD, Yen MF, Chen TH. Progression of pre-hypertension, stage 1 and 2 hypertension (JNC 7): a population-based study in Keelung, Taiwan (Keelung Community-based Integrated Screening No. 9). J Hypertens 2006;24:821–8.