The Effectiveness of Various Postpartum Depression Treatments and the Impact of Antidepressant Drugs on Nursing Infants

Dwenda Gjerdingen, MD, MS

Background: Postpartum depression is seen in approximately 13% of women who have recently given birth; unfortunately, it often remains untreated. Important causes for undertreatment of this disorder are providers’ and patients’ lack of information about the effectiveness of various treatments, and their concerns about the impact of treatment on nursing infants. This article presents research-based evidence on the benefits of various treatments for postpartum depression and their potential risks to nursing infants.

Methods: The medical literature on postpartum depression treatment was reviewed by searching MEDLINE and Current Contents using such key terms as “postpartum depression,” “treatment,” “therapy,” “psychotherapy,” and “breastfeeding.”

Results and Conclusions: There is evidence that postpartum depression improves with antidepressant drug therapy, estrogen, individual psychotherapy, nurse home visits, and possibly group therapy. Of the more frequently studied antidepressant drugs in breastfeeding women, paroxetine, sertraline, and nortriptyline have not been found to have adverse effects on infants. Fluoxetine, however, should be avoided in breastfeeding women. By administering effective treatment to women with postpartum depression, we can positively impact the lives of mothers, their infants, and other family members. (J Am Board Fam Pract 2003;16:372–82.)
sure accurate diagnosis, effective treatment, and follow-up.\(^8\) In a study of 342 women, use of the Edinburgh Postnatal Depression Scale (EPDS) to screen for depression at approximately 6 weeks postpartum improved the rate of depression diagnosis from 3.7% to 10.7%.\(^9\) Although the EPDS is the most commonly used screening tool for postpartum depression in research studies,\(^3\) the Task Force suggests that screening with a simple 2-question tool, developed by Whooley et al (1997),\(^10\) may be as effective as longer instruments. The tool includes these questions: (1) “Over the past 2 weeks, have you felt down, depressed, or hopeless?” and (2) “Over the past 2 weeks, have you felt little interest or pleasure in doing things?”\(^{10}\) A positive response to either question indicates a positive screen and should be followed by an expanded history to confirm the diagnosis of depression.

Once the diagnosis of postpartum depression has been established, it should be treated using methods similar to those used for non-postpartum major depressive disorder. These consist of (1) patient education regarding depression, including the biologic basis of depression, treatment options, therapeutic and adverse effects of antidepressant drugs, desired duration of treatment (usually several months or longer), and the need for a healthy lifestyle and social support and (2) the selection of an active treatment modality (usually antidepressant medication and/or psychotherapy) through shared decision making between the patient and provider.\(^{11}\) Notably, the treatment of depression in the postpartum period may be more challenging than in other stages of life. Patients and physicians often have concerns about the use of psychotropic medications in breastfeeding women and, related to this, questions about other viable treatment options for breastfeeding women. Therefore, the purpose of this article is to review empirically based information about the effectiveness of various pharmacologic and nonpharmacologic treatment modalities for postpartum depression and antidepressant drug effects on nursing infants.

Methods

A literature search on treatments for postpartum depression (ie, drug therapy, individual and group therapy, and other support therapy) was performed by searching MEDLINE, 1966 to August 2002. The key search terms used were “postpartum depression,” “postnatal depression,” “puerperal depression,” “treatment,” “therapy,” “drug therapy,” “psychotherapy,” and “breastfeeding.” Current Contents was also searched from 1994 to August 2002 using the key terms “postpartum depression,” “puerperal depression,” “postnatal depression,” “therapy,” “psychotherapy,” and “group therapy.” Searches were mostly limited to randomized controlled trials. Secondary searches were performed using the bibliographies of review articles\(^{12-14}\) and other articles obtained through these search meth-

Table 1. Symptoms and Diagnostic Criteria for Major Depressive Episode

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Depressed mood most of the day.</td>
</tr>
<tr>
<td>2. Markedly diminished interest or pleasure in all, or almost all, activities, most of the day.</td>
</tr>
<tr>
<td>3. Marked decrease or increase in appetite, resulting in significant unintentional weight loss or weight gain (ie, >5% body weight in 1 month).</td>
</tr>
<tr>
<td>4. Insomnia or hyperomnia .</td>
</tr>
<tr>
<td>5. Psychomotor agitation or retardation .</td>
</tr>
<tr>
<td>6. Fatigue or loss of energy.</td>
</tr>
<tr>
<td>7. Feelings of worthlessness or inappropriate guilt.</td>
</tr>
<tr>
<td>8. Decreased ability to think or concentrate.</td>
</tr>
<tr>
<td>9. Recurrent thoughts of death, or recurrent suicidal thoughts (with or without a plan).</td>
</tr>
</tbody>
</table>

Diagnostic Criteria

Five or more of the symptoms listed above, representing a change in baseline, present nearly every day for the same 2-week period, and producing clinically significant distress or change in functioning

Must include symptom 1 or 2.

Symptoms do not meet criteria for a mixed episode, and they are not due to drugs, another medical condition, or bereavement (unless prolonged; i.e., >2 months)

ods. This procedure yielded 74 articles reporting on 8 types of treatment: antidepressant drugs (4 articles) and their effects on breast milk and nursing infants (50 articles), hormonal treatment (8 articles), individual or group psychotherapy (7 articles), nurse home visits (2 articles), and other treatments, including phototherapy, massage therapy, and electroconvulsive therapy (3 articles). Alternative drugs are not discussed here, because information about the safety of these agents is variable. Prophylactic treatments are also not included, because the amount of information on this topic is sufficient for another review.

Results

Antidepressant Treatment

Numerous studies have found antidepressant drugs to be effective in treating general depression. Although newer antidepressants [e.g., selective serotonin reuptake inhibitors (SSRIs)] are as efficacious as the older tricyclic antidepressants (TCAs), the SSRIs are the drugs of choice for treating depressive disorders because of their greater tolerability and their relative safety if taken in overdose. Common side effects for TCAs include anticholinergic effects, weight gain, sedation, and orthostatic hypotension, whereas adverse effects for SSRIs include nausea, anorexia, diarrhea, headache, anxiety, nervousness, insomnia, drowsiness, sexual dysfunction, and increased sweating.

Less attention has been given to the efficacy of antidepressant medications for postpartum depression. Uncontrolled studies have typically shown improvement in postpartum depressive symptoms after treatment with antidepressants such as sertraline, fluvoxamine, and venlafaxine. However, because depression normally improves over time even without treatment, it is difficult to know whether the improvement in depressive symptoms seen in these studies can be attributed to antidepressant drugs or other factors. A fourth study controlled for such factors by randomizing 87 subjects to 4 groups: fluoxetine or placebo plus 1 or 6 sessions of counseling. Results showed that fluoxetine was better than placebo, and 6 sessions of counseling were better than 1, but there was no added benefit to combining fluoxetine and multiple counseling sessions. This trial provides experimental evidence that antidepressant drug therapy is effective in treating postpartum depression.

Antidepressant Treatment in Breastfeeding Mothers

A deterrent to mothers’ use of antidepressant medications in the postpartum period is concern about potential adverse effects on the nursing infant. Several studies have been conducted to inform these concerns. Table 2 reports infant serum levels of antidepressants and behavioral outcomes for breastfeeding newborns whose mothers were treated with a variety of antidepressants, including several SSRIs and TCAs. Infant serum levels of antidepressants, rather than breast milk concentrations, are reported, because serum levels are considered to be more direct determinants of drug exposure.

For most of the infants in these studies, serum levels of antidepressant drugs were either not detectable or very low. Exceptions to this were relatively high infant levels of nefazodone in 1 infant and fluoxetine in 3 other infants. In each of these cases, disconcerting symptoms were seen—eg, increased crying, vomiting, diarrhea, colic, and decreased sleep with fluoxetine, and drowsiness, lethargy, hypothermia, and poor feeding with nefazodone. The infant whose mother had taken nefazodone was preterm, which may have contributed to the problem. Adverse clinical outcomes were also seen in 1 infant exposed to citalopram, 2 infants exposed to doxepin, 1 infant exposed to nefazodone, and infants from 3 additional studies with fluoxetine. The largest fluoxetine study compared 64 fluoxetine-treated mother-infant pairs with 38 non-treated mother-infant pairs. Statistically significant reductions in infant weight were seen in the fluoxetine group (average deficit, 392 g between 2 weeks and 6 months of age). Given the various concerns regarding antidepressant treatment for breastfeeding women, the US Food and Drug Administration has not approved any antidepressant for use during lactation.

These studies provide helpful clinical information about antidepressant transmission to nursing infants, but their methodological weaknesses must also be considered. First, many of the studies listed in Table 2 used a very low sample size; in the majority of reports, only 1 or 2 infants are represented. Second, sampling and measurement methods vary between studies; older studies tend to use less sensitive methods. Third, nursing infants generally ingest relatively small amounts of these drugs—less than 1% of the maternal dose;
<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Infants</th>
<th>Maternal Dose</th>
<th>Infant Age (weeks)</th>
<th>Infant Serum Drug Levels (Lower Limit of Detection)*</th>
<th>Adverse Infant-Related Clinical Outcomes</th>
</tr>
</thead>
</table>
| **Selective Serotonin Reuptake Inhibitors (SSRIs)**
 Citalopram (Celexa)
 Jensen et al, 1997 | 1 | 20 mg/day | 8 | 7 ng/mL | None |
 Schmidt et al, 2000 | 1 | 10 mg/day | 6 | 12.7 ng/mL | None |
 Rampono et al, 2000 | 7 | 0.36 mg/kg/day (median) | Not detected; 2.3 ng/mL (1 ng/mL) | None |
 Spigset et al, 1997 | 3 | 20–40 mg/day | 8–16 | Not discussed | None |
 Brent & Wisner, 1998 | 1 | 20 mg/day | 2–3 | 61 ng/mL | None |
 Fluoxetine (Prozac)
 Burch & Wells, 1992 | 1 | 20 mg/day | 2–3 | 61 ng/mL | Limp, unresponsive, cyanotic (mother also taking carbamazepine and buspirone) |
 Chambers et al, 1999 | 64 | Not given | 2–24 | Not discussed | Lower growth curves (average deficit of 392 g) |
 Hendrick et al, 2001 | 20 | 10–60 mg/day | 0–31 | Fluoxetine, <1–84 ng/mL; Norfluoxetine, <1–265 ng/mL (2 ng/mL) | Irritability, colic in 2 infants; irritability, crying, and poor feeding in 2 infants (one of these also had methadone exposure) |
 Isenberg, 1990 | 1 | 20 mg/day | 20 | Not discussed | None |
 Kristensen et al, 1999 | 14 | 0.24–0.94 mg/kg/day | 0–60 | Not detected; 252 ng/mL (10 ng/mL) | Colic in 2 infants; irritability, crying, and decreased sleep, problem reversed with formula feeding |
 Lester et al, 1993 | 1 | 20 mg/day | 24 | Fluoxetine, 340 ng/mL; Norfluoxetine, 208 ng/mL | None |
 Taddio et al, 1996 | 11 | 0.17–0.85 mg/kg/day | 3–107 | Not detected in the one infant sampled (1 ng/mL) | None |
 Yoshida et al, 1998 | 4 | 20–40 mg/day | 4–40 | Fluoxetine and nonfluoxetine not detectable (2 ng/mL) | None |
 Fluvoxamine (Luvox)
 Hendrick et al, 2001 | 5 | 100–150 mg/day | 6–13 | Not detected (1 ng/mL) | None |
 Piomtek, 2001 | 2 | 300 mg/day | 2–8 | Not detected (2.5 ng/mL) | None |
 Wright et al, 1991 | 1 | 200 mg/day | 12 | Not discussed | None |
 Yoshida et al, 1997 | 1 | 100–200 mg/day | 17 | Not discussed | None |
 Paroxetine (Paxil)
 Hendrick et al, 2001 | 16 | 5–30 mg/day | 2–26 | Not detected (1 ng/mL) | None |
 Misri et al, 2000 | 23 | 10–40 mg/day | 4–42 | Not detected (0.1 ng/mL) | None |
 Ohman et al, 1999 | 7 | 10–40 mg/day | 6–30 | Not discussed | None |
 Stowe et al, 2000 | 16 | 10–50 mg/day | 4–55 | Not detected (2 ng/mL) | None |
 Sertraline (Zoloft)
 Alshuler et al, 1995 | 1 | 100 mg/day | 3–7 | Not detected (0.5 ng/mL) | None |
 Dodd et al, 2001 | 10 | 50–150 mg/day | 2–60 | Not detected (2 ng/mL) | None |
 Epperson et al, 2001 | 14 | 25–200 mg/day | 17–26 | Not detected (2.5 ng/mL) | None |
 Hendrick et al, 2001 | 33 | 25–200 mg/day | 2–60 | Not detected in 28; 2–8 ng/mL in 2 (1 ng/mL) | None |
 Holland, 2000 | 6 | Not discussed | 12–16 | Not detected | Reduced breast milk supply |
 Stowe et al, 1997 | 11 | 25–150 mg/day | 4–141 | Sertraline, undetectable or <3 ng/mL; desmethylsertraline, undetectable or <10 ng/mL (1 ng/mL) | None |
 Wisner et al, 1998 | 9 | 50–200 mg/day | 0–22 | Sertraline, not detected or <64 ng/mL; N-desmethyldesmethylsertraline, not detected or <68 ng/mL (2 ng/mL) | None |
 Tricyclic Antidepressants (TCAs)
 Amitriptyline (Elavil)
 Bader & Newman, 1989 | 1 | 100 mg/day | 7 | Not detected (10 ng/mL) | Not discussed |
 Breyer-Paiff et al, 1995 | 1 | 175 mg/day | 0–4 | Not detected (5 ng/mL) | None |
 Brixen-Rasmussen et al, 1982 | 1 | 75–100 mg/day | 14–30 | Not detected (5 ng/mL) | None |
<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Infants</th>
<th>Maternal Dose</th>
<th>Infant Age (weeks)</th>
<th>Infant Serum Drug Levels (Lower Limit of Detection)*</th>
<th>Adverse Infant-Related Clinical Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erickson et al, 1979</td>
<td>52</td>
<td>150 mg/day</td>
<td>8–11</td>
<td>Not detected (28 ng/mL)</td>
<td>Not discussed</td>
</tr>
<tr>
<td>Pittard & O’Neal, 1986</td>
<td>1</td>
<td>100 mg/day</td>
<td>2–3</td>
<td>Not discussed</td>
<td>Not discussed</td>
</tr>
<tr>
<td>Yoshida et al, 1997</td>
<td>2</td>
<td>100–175 mg/day</td>
<td>4–34</td>
<td>Not detected in one, 7.5 ng/mL in one (0.1 ng/mL)</td>
<td>Probably none (1 infant was hypotonic before and after exposure)</td>
</tr>
<tr>
<td>Clomipramine (Anafranil) Schimmell et al, 1991</td>
<td>1</td>
<td>125 mg/day</td>
<td>1–5</td>
<td>9.8–45.4 (20 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Winner et al, 1995</td>
<td>4</td>
<td>75–125 mg/day</td>
<td>2–19</td>
<td>Not detected or not quantifiable (10 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Yoshida et al, 1997</td>
<td>2</td>
<td>75–125 mg/day</td>
<td>20–56</td>
<td>Not detected in one; 3.2–5.5 ng/mL in one (0.1 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Desipramine (Norpramin) Stancer & Reed, 1986</td>
<td>1</td>
<td>300 mg/day</td>
<td>10–11</td>
<td>Not detected (1 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Doxepin (Sinequan) Frey et al, 1999</td>
<td>1</td>
<td>35 mg/day</td>
<td>1</td>
<td>Doxepin, 10 μg/L; N-desmethyldoxepin not detected (10 ng/mL)</td>
<td>Poor sucking and swallowing, drowsiness, hypotonia, vomiting, weight loss</td>
</tr>
<tr>
<td>Kemp et al, 1985</td>
<td>1</td>
<td>150 mg/day</td>
<td>6</td>
<td>Not detected (5 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Matheson et al, 1985</td>
<td>1</td>
<td>75 mg/day</td>
<td>8</td>
<td>Not detected (5 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Imipramine (Tofranil) Erickson et al, 1979</td>
<td>1</td>
<td>150 mg/day</td>
<td>8</td>
<td>Not detected (28 ng/mL)</td>
<td>Not discussed</td>
</tr>
<tr>
<td>Sovner & Orsulak, 1979</td>
<td>1</td>
<td>200 mg/day</td>
<td>4</td>
<td>Not discussed</td>
<td>None</td>
</tr>
<tr>
<td>Yoshida et al, 1997</td>
<td>4</td>
<td>75–150 mg/day</td>
<td>2–25</td>
<td>Not detected in 2; 0.6–7.4 ng/mL in two (0.1 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Nortriptyline (Pamelor) Altschuler et al, 1993</td>
<td>1</td>
<td>125 mg/day</td>
<td>3–7</td>
<td>Not detected (10 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Mannen et al, 1997</td>
<td>2</td>
<td>Not discussed</td>
<td>16–31</td>
<td>Nortriptyline not detected; E-10-hydroxynortriptyline, <4 (2 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Matheson & Skjæraasen, 1988</td>
<td>1</td>
<td>75–100 mg/day</td>
<td>1</td>
<td>Not discussed</td>
<td>None</td>
</tr>
<tr>
<td>Wisner & Perel, 1991</td>
<td>7</td>
<td>50–80 mg/day</td>
<td>0–24</td>
<td>Nortriptyline, not detectable; 10-hydroxynortriptyline, 5–11 ng/mL in 2 infants (4–5 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Wisner & Perel, 1996</td>
<td>5</td>
<td>75–110 mg/day</td>
<td>4–10</td>
<td>Not detected (<4 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Wisner et al, 1997</td>
<td>7</td>
<td>60–150 mg/day</td>
<td>4–6</td>
<td>0–10 ng/mL in 6 term infants; 16 ng/mL in the single preterm infant (4 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Other Antidepressants Buproprion (Wellbutrin) Briggs et al, 1993</td>
<td>1</td>
<td>100 mg/day</td>
<td>56</td>
<td>Not detected (25 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Nefazodone (Serzone) Yapp et al, 2000</td>
<td>1</td>
<td>300 mg/day</td>
<td>7–10</td>
<td>1270 ng/mL (lower limits of detection not given)</td>
<td>Drowsiness, lethargy, hypothermia, and poor feeding (preterm infant)</td>
</tr>
<tr>
<td>Venlafaxine (Effexor) Ilett et al, 1998</td>
<td>3</td>
<td>3–8 mg/kg/day</td>
<td>2–24</td>
<td>Venlafaxine, not detected (4 ng/mL); O-desmethylvenlafaxine, 23–225 ng/mL (3 ng/mL)</td>
<td>None</td>
</tr>
<tr>
<td>Ilett et al, 2002</td>
<td>7</td>
<td>225–300 mg/day</td>
<td>11–41</td>
<td>Venlafaxine, not detected; 5 ng/mL; O-desmethylvenlafaxine, 1.5–5.7 ng/mL (1 ng/mL)</td>
<td>None</td>
</tr>
</tbody>
</table>

Lower limits of detection are shown in parentheses (in nanograms per milliliter) when the specified drug was not detected in the infant's serum. Lower limits vary with the precision of the laboratory method. 'Safe' infant serum levels of antidepressants have not been established, in that safety profiles depend on the age of the infant (healthy term infants more than 10 weeks old have a lower risk of negative effects), the characteristics of the drug, and concentrations of its metabolites.
sequently, their serum levels of antidepressants tend to be very low. However, infants’ serum levels of antidepressants might not be representative of their brain levels, because brain tissue is very lipophilic. Fourth, most of the studies had relatively short-term follow-up, lasting weeks to months over the course of antidepressant treatment but not beyond the treatment period. An exception to this is the study by Piontek et al of fluvoxamine-exposed infants, where no ill effects were seen after 2 to 3 years of follow-up.

Maternal antidepressant therapy carries risks for nursing infants, but untreated depression is also risky—for mothers and infants. Thus, for each patient, the risks and benefits of treatment must be carefully weighed. If the potential benefits are thought to be greater, paroxetine, sertraline, and nortriptyline could be considered as initial drug therapy options. Each of these medications has been studied in more than 20 mother-infant pairs, with no adverse infant-related events observed. Fluoxetine should be avoided, and citalopram, doxepin, and nefazodone used only cautiously, because adverse effects have been associated with their use. It is generally recommended that treatment be initiated with an SSRI because of ease of administration and low toxicity. If the patient responds to an initial trial of medication lasting 6 to 8 weeks, the same dose should be continued for at least 6 months after full remission is achieved.

Hormonal Treatment

Women experience dramatic hormonal shifts with the birth of a child. During pregnancy, levels of endogenous glucocorticoids and estrogens increase, only to plummet after delivery, producing a transient hypoactivation of the hypothalamic-pituitary axis that lasts for weeks to months. Cizza et al demonstrated that the suppression of the hypothalamic-pituitary axis is more severe and lasts longer in women who develop postpartum blues or depression. In a study of 23 women with severe postpartum depression, 16 had serum estradiol levels below the threshold for gonadal failure. It follows, then, that the postpartum administration of exogenous hormones might be useful in blunting hormonal and mood declines in women who suffer from postpartum mood disorders.

In 2 prospective observational studies, a benefit to sublingual estrogen treatment of postpartum depression was found after only 2 weeks of treatment. These positive outcomes were substantiated in a randomized placebo-controlled trial of 61 depressed mothers. After 1 month, women in the treatment group (200 μg of transdermal 17β-estradiol administered daily) had fewer depressive symptoms than those in the control group, and this benefit persisted over the 6-month treatment period. Estrogen may also be effective therapy for postpartum psychosis, according to a few case reports. In contrast, progesterone has not been shown to be beneficial in treating postpartum mood disorders, and in fact may even be detrimental.

Additional trials should be conducted to confirm these findings and to evaluate the comparative benefit of hormonal versus antidepressant therapy for postpartum depression. Further research is also needed to assess the safety of estrogen treatment in the postpartum period, particularly as it relates to certain risks that are unique to or already increased in the postpartum period, such as decreased milk production in lactating women or thromboemboli.

Individual and Group Psychotherapy

Another approach to the treatment of postpartum depression is psychotherapy, administered as either an alternative or an adjunct to antidepressant drug therapy. Individual psychotherapy was found to be effective in 4 randomized controlled trials (Table 3). Therapy was administered either by experienced psychotherapists, trained health visitors, or both. The number of psychotherapy sessions ranged from 6 to 12. The study by Appleby et al was unique in that it compared individual psychotherapy with antidepressant therapy (fluoxetine)—both of which, as noted above, were found to be effective. A separate trial showed the value of including the partner in psychotherapy sessions. Women whose partners had participated in several psychotherapy sessions had lower Edinburgh Postnatal Depression Scores at the final assessment (which occurred 10 weeks after the first session) than those whose partners had not participated (8.6 vs 14.7, respectively).

Group therapy for mothers with postpartum depression has demonstrated mixed results: 2 studies found a benefit, and 1 did not. These inconsistent outcomes may have resulted from differences in the structure and/or content of the group therapy sessions. For example, in the 2 studies with
positive outcomes, therapy sessions seemed to be more structured than in the study with negative outcomes (the former 2 studies offered education about such topics as postpartum depression, stress management, communication skills, and life planning, whereas the latter dealt with women’s subjective views of childbirth, motherhood, and changing spousal relationships). More research is needed to determine whether group therapy may be helpful for certain populations of depressed mothers and, if so, the manner in which group therapy should be administered.
Nurse Home Visits
Another type of postpartum support that has been studied, particularly in Europe, is that provided through nurse or midwife home visits. Two randomized controlled trials have shown a benefit from this type of intervention. In the first, 41 depressed mothers were randomized to a control group or a treatment group; treatment group participants received 6 weekly counseling visits by a Child Health Clinic nurse, who acted as a supportive listener. Compared with the control group, the treatment group experienced a higher rate of recovery from postpartum depression (80% vs 25%). The second trial evaluated the benefit of a nurse home visit program for 181 women with adverse family characteristics. Visits were made every week for 6 weeks, then every other week for an additional 6 weeks. During their visits, nurses provided guidance on childcare issues, facilitated access to community services, and reinforced successes. Here too, the treatment group showed better outcomes, with Edinburgh Postnatal Depression Scores of 5.7, compared with 7.9 in the control group.

Other Treatments
In addition to the previously described treatments for postpartum depression, certain physical modalities, such as light therapy, massage therapy, and electroconvulsive therapy, have been tested on a limited basis. Light therapy, often used for seasonal affective disorder, was evaluated in 2 depressed women—one who had been depressed for more than 4 months and refused antidepressant medication and another who had been depressed for an unspecified length of time but had not responded to a trial of psychotherapy. In both women, Hamilton Rating Scale for Depression scores fell markedly after 4 weeks of daily 30-minute phototherapy sessions (from 28 to 29 at baseline to 11 to 12 at follow-up). Field et al evaluated massage therapy by randomizing 32 depressed adolescent mothers to relaxation or massage therapy, administered for 30 minutes on 2 consecutive days, for 5 weeks. Results showed that mothers in the massage group had less anxiety, less anxious behavior, and lower stress hormone levels after their sessions than did mothers in the relaxation therapy group. Electroconvulsive therapy, long used for non-postpartum depression, is also thought to be both effective and safe in the postpartum period. Larger controlled studies on these and other nonpharmaceutical treatments for postpartum depression are needed to expand treatment options, particularly for breastfeeding women.

Summary
In conclusion, several treatments for postpartum depression have been found to be effective. These include individual psychotherapy and antidepressant drug therapy. Paroxetine, sertraline, and nortriptyline were among the most widely studied antidepressants for which no adverse effects on breastfeeding infants were reported. Other treatments that show promise in managing postpartum depression include estrogen therapy, nurse home visits, and possibly group therapy. More research is needed to identify additional effective treatments, particularly those that are safe for breastfeeding women. These treatments should be combined with patient education about the illness, the specific treatment selected, and other mechanisms for promoting health, such as social support and a healthy lifestyle.

References

78. Granger ACP, Underwood MR. Review of the role of transdermal estrogen in postnatal depression. Postpartum Depression Treatment 381.