Meta-Analysis of Prostate-Specific Antigen and Digital Rectal Examination as Screening Tests for Prostate Carcinoma

Kishor Mistry, MD, PhD, and Greg Cable, PhD

Background: Physicians commonly screen for prostate cancer by using prostate-specific antigen (PSA) and digital rectal examination (DRE). The usefulness of these screening mechanisms is not well established, however. A meta-analysis of PSA and DRE to detect prostate carcinoma was conducted with a focus on sensitivity, specificity, and positive predictive value.

Methods: A literature search of OVID database (1966 to November 1999) using the medical subject headings “prostate-specific antigen” and “mass screening,” as well as “prostate carcinoma,” was performed. Thirteen articles were selected for the meta-analysis in this study. Most studies included asymptomatic men older than 50 years from various countries. Pooled results were calculated from the individual reports for sensitivity, specificity, and positive predictive value for PSA and DRE based on biopsy result as the reference standard.

Results: The overall detection rate of prostate carcinoma was 1.8% based on a positive biopsy. Of the prostate carcinoma detected, 83.4% was localized. The pooled sensitivity, specificity, and positive predictive value for PSA were 72.1%, 93.2% and 25.1%, respectively; and for DRE were 53.2%, 83.6% and 17.8%, respectively.

Conclusions: There were two major outcomes of this meta-analysis. One was the potential for detecting early-stage prostate cancer with these screening tests, because 83.4% of total cancers detected were localized. The second important outcome was that the overall sensitivity, specificity, and positive predictive value for PSA were higher than those for DRE when used as a screening tool to detect prostate cancer. When a patient has abnormal findings using PSA and DRE, the chance of cancer is 1 in 4 or 5. Conversely, when findings from PSA and DRE are normal, the chance of missing a cancer is about 10%.

(J Am Board Fam Pract 2003;16:95–101.)
from prostate cancer in a case-control study and a quasi-cohort study, DRE does detect some prostate cancers that are missed by PSA screening.²

Prostate cancer mortality has recently decreased by 6% after peaking in 1990s. It is hard to attribute this decrease to PSA screening implementation, because the effect is too proximate to the use of screening method. Also, there is no correlation between this drop in mortality and the intensity of the PSA screening conducted in various regions. Studies have shown that men with organ-confined prostate cancer managed with radical prostatectomy survive as long as men of similar age who never had prostate cancer.⁸ Many studies have failed to show, however, any improvement in mortality or morbidity from screening for prostate cancer by whatever diagnostic test.⁹–¹²

Screening for prostate cancer remains a controversial issue. Even the American Cancer Society has modified its position on men eligible for prostate cancer screening from “should undergo digital rectal examination and PSA testing annually” to “recommends that both the PSA testing and digital examination be offered annually.” American Academy of Family Physician and US Preventive Services task Force do not recommend routine screening in low-risk patients.¹³

This study is a meta-analysis of existing research of PSA and DRE as screening tests for detecting prostate carcinoma. The data from this study should help primary care physicians decide whether to use PSA and DRE to screen for prostate carcinoma.

Methods

Study Selection

A literature search of OVID database (1966 to November 1999) using the medical subject headings “prostate-specific antigen” and “mass screening,” as well as “prostate carcinoma,” was performed. The search was restricted to English-language studies and conducted in human subjects. The inclusion criteria for the meta-analysis were (1) studies in which data were available or could be calculated for percentage of population with abnormal PSA, DRE, and biopsy findings, or sensitivity and specificity for PSA and DRE testing; (2) studies that included biopsy as a reference standard to prove prostate carcinoma; and (3) subjects who were asymptomatic for prostate carcinoma. Letters without data were not included. In these studies biopsies were performed if PSA levels or DRE findings were abnormal. A total of 83 articles were found and reviewed to select 13 articles.⁵,⁷,¹⁴–²³

Data Abstraction

Data were collected from the published studies only, without contacting the authors for additional information. The following parameters were collected or calculated from these studies:

1. Detection rate = population with prostate carcinoma/total population screened × 100
2. Percentage of local prostate cancer = localized prostate carcinoma/total prostate carcinoma ×100
3. Biopsy/prostate cancer = ratio of total biopsies performed to actual number of positive biopsies detected
4. Percentage of abnormal PSA = population with greater than 4 ng/mL PSA as a percentage of total population screened
5. Percentage of abnormal DRE = population with abnormal prostate examination on palpation (nodule, asymmetry, hard) as a percentage of total population screened
6. Positive predictive value of PSA (or DRE) = percentage of positive biopsies/total positive PSA (or DRE)
7. PSA (or DRE) sensitivity = percentage of abnormal PSA (or DRE)/total positive biopsies
8. PSA (or DRE) specificity = percentage of normal PSA (or DRE)/total negative biopsies

Statistical Analysis

Parameter estimates from each study were used to calculate pooled estimates. Pooled estimates were weighted averages constructed using the study sample sizes as weights. In the same manner that disproportionate stratified sampling parameter estimates are adjusted for stratum size, this simple device ensures that the contribution of each study was proportionate to the size of the study and that extreme individual parameter estimates did not result in overestimation or underestimation of the pooled data.²⁴ The confidence interval for pooled data calculation was 95%.

Results

The data are shown in Tables 1, 2, and 3. In some studies the data on sensitivity, specificity, and pos-
positive predictive value were published; however, in other studies these were calculated from the original published data. Pooled parameter estimates for measures at the interval or ratio level of measurement could not be calculated without the raw data.

As shown in Table 1, the overall detection rate for prostate carcinoma by biopsy was 1.8%, with a wide range of 0.6% to 3.9%. There was no specific correlation with the country in which the study was conducted. Of the total prostate carcinoma detected using PSA or DRE as screening tests, 83.4% were localized, with a range of 64.4% to 90.0%. The overall ratio of total biopsies performed to actual positive prostate carcinoma detected was 4.0, with a range of 3.7 to 8.9.

Table 1. Detection Rate and Biopsies Performed to Detect Prostate Carcinoma (PCA).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population Size (all males)</th>
<th>Age (years)</th>
<th>Detection Rate (%)</th>
<th>Localized PCA (% of Total)</th>
<th>Bx/PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangma et al14</td>
<td>1,726 Netherlands</td>
<td>55–76</td>
<td>3.88</td>
<td>88.06</td>
<td>4.60</td>
</tr>
<tr>
<td>Brett15</td>
<td>211 Australian</td>
<td>50–79</td>
<td>1.42</td>
<td></td>
<td>3.67</td>
</tr>
<tr>
<td>Bretton16</td>
<td>1,027 American</td>
<td>40–89</td>
<td>3.80</td>
<td>64.40</td>
<td>5.77</td>
</tr>
<tr>
<td>Gustafsson et al17</td>
<td>1,782 Swedish</td>
<td>55–70</td>
<td>2.71</td>
<td></td>
<td>5.71</td>
</tr>
<tr>
<td>Higashihara et al7</td>
<td>701 Japanese</td>
<td>50–92</td>
<td>1.85</td>
<td></td>
<td>8.92</td>
</tr>
<tr>
<td>Horninger et al18</td>
<td>21,078 Austrian</td>
<td>45–79</td>
<td>0.94</td>
<td></td>
<td>3.95</td>
</tr>
<tr>
<td>Horninger et al18</td>
<td>21,078 Austrian</td>
<td>40–65</td>
<td>2.77</td>
<td>85.71</td>
<td>4.13</td>
</tr>
<tr>
<td>Imai et al19</td>
<td>1,680 Japanese</td>
<td>39–89</td>
<td>0.89</td>
<td></td>
<td>8.80</td>
</tr>
<tr>
<td>Imai et al20</td>
<td>3,276 Japanese</td>
<td>40–89</td>
<td>1.40</td>
<td>60.78</td>
<td>4.13</td>
</tr>
<tr>
<td>Jubelirer et al3</td>
<td>142 American</td>
<td>50–85</td>
<td></td>
<td>75.00</td>
<td>3.75</td>
</tr>
<tr>
<td>Maattanen et al5</td>
<td>5,053 Finish</td>
<td>55–75</td>
<td>2.34</td>
<td>90.00</td>
<td>3.80</td>
</tr>
<tr>
<td>Reissigl et al21</td>
<td>2,272 Austrian</td>
<td>40–65</td>
<td>2.85</td>
<td>86.00</td>
<td>3.97</td>
</tr>
<tr>
<td>Stenman et al22</td>
<td>7,204 Finish</td>
<td>45–84</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsukamoto et al23</td>
<td>1,639 Japanese</td>
<td>39–89</td>
<td>1.10</td>
<td></td>
<td>6.39</td>
</tr>
<tr>
<td>Pooled results</td>
<td>47,791</td>
<td></td>
<td>1.80</td>
<td>83.40</td>
<td>4.00</td>
</tr>
</tbody>
</table>

*% of localized prostate carcinoma/total prostate carcinoma × 100.
†Bx/PCA = total biopsies performed/actual number of positive biopsies.

Table 2. Positive Predictive Value, Sensitivity, and Specificity of Prostate-Specific Antigen (PSA) as Screening Parameter.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population with PSA > 4 ng/mL (%)</th>
<th>Positive Predictive Value (%)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangma et al14</td>
<td>10.31</td>
<td>30.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brett15</td>
<td>9.50</td>
<td></td>
<td>66.67</td>
<td>18.00</td>
</tr>
<tr>
<td>Bretton16</td>
<td>13.00</td>
<td>27.91</td>
<td>92.31</td>
<td></td>
</tr>
<tr>
<td>Gustafsson et al17</td>
<td>17.17</td>
<td>17.00</td>
<td>80.00</td>
<td></td>
</tr>
<tr>
<td>Higashihara et al7</td>
<td>11.27</td>
<td>24.00</td>
<td>92.30</td>
<td>63.10</td>
</tr>
<tr>
<td>Horninger et al18</td>
<td>8.88</td>
<td>25.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horninger et al18</td>
<td>12.50</td>
<td>22.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imai et al19</td>
<td>4.46</td>
<td>27.50</td>
<td>73.33</td>
<td>99.75</td>
</tr>
<tr>
<td>Imai et al20</td>
<td>5.13</td>
<td>45.10</td>
<td>80.40</td>
<td></td>
</tr>
<tr>
<td>Jubelirer et al3</td>
<td>12.60</td>
<td>30.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Maattanen et al5</td>
<td>8.47</td>
<td>27.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reissigl et al21</td>
<td>10.74</td>
<td>18.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenman et al22</td>
<td>57.00</td>
<td>97.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsukamoto et al23</td>
<td>4.30</td>
<td>23.20</td>
<td>88.90</td>
<td></td>
</tr>
<tr>
<td>Pooled results</td>
<td>10.10</td>
<td>25.10</td>
<td>72.10</td>
<td>93.20</td>
</tr>
</tbody>
</table>

Positive predictive value of PSA = percent of positive biopsies/total positive PSA.
The positive predictive value, sensitivity, and specificity values for PSA are shown in Table 2. A total of 10.1% of the population was positive for PSA, with a range of 4.3 to 17.2 ng/mL. The positive predictive value was 25.1%, with a range of 17.0% to 57.0%. The sensitivity of PSA in detecting prostate carcinoma was 72.1%, with a range of 66.7% to 100.0%. The specificity of PSA in the detection of prostate carcinoma was 93.2%, with a range of 63.1% to 100.0%.

The data on positive predictive value, sensitivity, and specificity of DRE are shown in Table 3. Overall, 5.0% of the population had abnormal findings on DRE, ranging between 4.2% to 19.3%. The positive predictive value for DRE in detecting prostate carcinoma was only 17.8%, with a range of 5.0% to 33.1%. The sensitivity of DRE in detecting prostate carcinoma was 53.2%, with a range of 49.0% to 69.2%. The overall specificity of DRE was 83.6%, with a wide range of 18% to 99.5%.

Discussion
There were two major outcomes of this meta-analysis. One was the potential for detecting early-stage prostate cancer with these screening tests, because 83.4% of total cancers detected was localized. The second important outcome was with the comparison of PSA and DRE as screening tools to detect prostate cancer. The overall sensitivity, specificity, and positive predictive value for PSA were 72.1%, 93.2% and 25.1%, respectively; and those for DRE were 53.2%, 83.6% and 17.8%, respectively. When a patient has abnormal PSA levels or DRE findings, the chance of having cancer is 1 in 4 or 5; conversely, when PSA levels or findings on DRE are normal, the chance of missing the cancer is about 10%.

There are two major limitations of the studies available for current meta-analysis. The most serious flaw is that these studies lack a control group that had no screening or treatment. This limitation is not unique to prostate carcinoma studies. For many clinical studies it would be unethical to observe patients without providing the current standards of screening and treatment. The other limitation was a lack of biopsy results (the extant reference standard) for all the participating patients, specially those with normal PSA levels and DRE findings, because of the invasiveness of this test. As a result, all specificity, sensitivity, and positive predictive values reported in the published studies are potentially biased by the effect of aggressiveness in performing the biopsies and the variations in the determination of PSA levels and DRE findings. This point is well illustrated by the reported studies using a lower cutoff value of abnormal PSA levels. Two studies show that of a total population with prostate carcinoma, 14% have a PSA level of less than 3 ng/mL, 23% to 24% have a PSA level of 3 to 4 ng/mL, and 62% have a PSA level of more than 4 ng/mL. By using a currently accepted cutoff level of more than 4 ng/mL, we are able to detect 62% of prostate cancers.
because 38% cancer patients have PSA levels of less than 4 ng/mL.

Criteria for a clinically useful screening test are as follows: (1) the disease must constitute a serious public health problem; (2) the disease must be able to be diagnosed during an asymptomatic, localized phase; (3) the screening test must have appropriate sensitivity, specificity, and predictive value; (4) the potential for cure must be greater among patients with prostate cancer detected by screening; and (5) improved outcomes related to screening must be shown. After these criteria are satisfied, the cost-effectiveness of the screening program must also be justified.

The importance of prostate cancer as a public health problem and that it can be diagnosed during an asymptomatic, localized stage easily satisfy using PSA and DRE as screening tools for the first two of the above-listed criteria; however, there are no clear answers for the remaining criteria.

An autopsy study of Detroit men found unsuspected prostate cancers in 30% of men in their 20s through 40s, and in more than one half of men older than 50 years. The prevalence of these unsuspected prostate cancers is frequently estimated to be about 33%. These high rates of unsuspected prostate cancers are in sharp contrast to the 3.64% estimated lifetime risk of dying from prostate cancer, as well as lower pooled data of 1.8% detection rate of prostate carcinoma in the current meta-analysis. Once regional lymph node involvement occurs, the probability of death from prostate cancer is 70%, and 50% of those will die in 2 years. Prostate cancer is a real risk for the aging man, because almost 10% of men older than 50 years are likely to develop clinically serious disease; therefore, it must be detected at an early stage.

It is necessary to increase the sensitivity to detect more cancers at an early stage. In the current study, the sensitivities of PSA and DRE screening tests were 72.1% and 53.2%, respectively. Reducing the PSA cutoff point from 4 ng/mL to 3 ng/mL can increase the sensitivity, but doing so will reduce further the positive predictive value. It is also well known that PSA values for prostate cancer and benign prostate hyperplasia overlap considerably. Between 21% and 47% of men with histologically proven benign prostate hyperplasia have PSA levels of more than 4 ng/mL, and up to 43% of men with prostate cancer will have a PSA level of less than 4 ng/mL. This overlap makes it harder to differenti-
prostate, bladder, pelvis, and renal organs, as well as
guided needle biopsy, which can cost $2,170 per
patient. The total cost of these two visits will ex-
ceed $7.6 billion for 3.1 million men. Of 3.1 mil-
lion biopsies performed, 75%, ie, 2.3 million, will
be negative for prostate carcinoma.

We need more data showing improved mortality
or morbidity before investing in these expensive
procedures. In fact, such an answer might come
after the PLCO (prostate, colorectal, and ovarian)
screening study. This NIH/European randomized
study of 148,000 patients to determine whether
screening reduces mortality is expected to provide
definitive results in 2005 to 2008.35

Conclusions
Our study showed that screening using PSA and
DRE can detect 83.4% of prostate cancers in an
early, localized stage. In contrast, two thirds of
patients with prostate cancer have metastatic dis-
ease by the time they become clinically symptom-
atic. We must improve the sensitivity and specific-
ity of the screening methods by using such tools as
age-specific cutoff values, determining free and
bound forms of PSA, correcting PSA for benign
prostate hyperplasia, and standardizing DRE. More
precise screening will permit detection of prostate
cancer in a younger population and thus achieve
compelling improvements in mortality and mor-
bidity.

Stuart Green, Dr. Thomas Holland, Dr. Susan Kaye and Dr.
John Siegal provided the support, help, and advice to carry out
this research project.

References
1. Greenelee RT, Hill-Harmon MB, Murry T, Thun
51:15–36.
24.
3. Jubelirer SJ, Tierney JP, Oliver S, et al. The value of
prostatic specific antigen in prostate cancer screening
4. Marwick C. Global review of diet and cancer links
5. Maattanen L, Auvinen A, Stenman UH, et al. Euro-
pean randomized study of prostate cancer screening:
first-year results of the Finnish trial. Br J Cancer
Quantitation of prostate-specific antigen in serum by
a sensitive enzyme immunoassay. Cancer Res 1980;
40:4658–62.
7. Higashihara E, Nutahara K, Koijima M, et al. Signif-
icance of free prostate-specific antigen and gamma-
seminoprotein in the screening of prostate cancer.
8. Jewett HJ, Bridge RW, Gray GF Jr, Shelley WM.
The palpable nodule of prostate cancer. Results of
15 years after radical excision. JAMA 1968;203:
403–6.
9. Osterling JE. Early detection of prostate cancer. De-
creasing the mortality rate. Minn Med 1996;79:
46–9.
of the US Preventive Services Task Force. Balti-
11. Kramer BS, Brown ML, Prorok PC, Potosky AL,
Gohagan JK. Prostate cancer screening: what we
know and what we need to know. Ann Intern Med
12. Woolf HS. Screening for prostate cancer with pro-
state-specific antigen: an examination of evidence.
screening guidelines. Am J Fam Physician 2001;63:
1101–12.
The value of screening tests in the detection of
prostate cancer. Part II: retrospective analysis of free/total prostate-specific analysis ratio, age-specific
reference ranges, and PSA density. Urology 1995;46:
779–84.
15. Brett TD. An analysis of digital rectal examination
and serum-prostate-specific antigen in the early de-
tection of prostate cancer in general practice. Fam
16. Bretton PR. Prostate-specific antigen and digital rec-
tal examination in screening for prostate cancer: a
community-based study. South Med J 1994;87:
720–3.
17. Gustafsson O, Mansour E, Norming U, Carlsson A,
Tombloom M, Nyman CR. Prostate-specific antigen
(PSA), PSA density and age-adjusted PSA reference
values in screening for prostate cancer—a study of a
randomly selected population of 2,400 men. Scand
cancer screening in Tyrol, Australia: experience and
icance of prostate specific antigen for early stage
prostate cancer detection. Jpn J Clin Oncol 1994;24:
160–5.
Diagnostic significance of prostate specific antigen
and the development of a mass screening system for

